
An Introduction to AutoLISP

An Introduction to AutoLISP
Lesson One in the CADalyst

University of Wisconsin Introduction to AutoLISP Programming course covers AutoLISP data types and
program execution

by
Anthony Hotchkiss, Ph.D, P.Eng.

About this course.

Introduction to AutoLISP Programming is an eight-lesson independent study course, originally published in monthly
installments in CADalyst magazine. Readers may optionally register for the course in order to receive a copy of the
printed course outline, a study guide containing additional AutoLISP examples, reference materials, and solutions to the
practical assignments. On successfully completing an intermediate and a final mail-in project, students will receive
certificates of completion and 4.0 CEU's (continuing education units).

For further information, contact:

Steve Bialek
Engineering Professional Development
University of Wisconsin-Madison
432 North Lake Street
Madison, Wisconsin 53706
(608) 262-1735

LESSON ONE - AN INTRODUCTION TO AUTOLISP

This months lesson introduces you to AutoLISP as a set of functions and other data types, and explains a variety of
ways in which AutoLISP expressions and programs may be executed, or 'run' during your AutoCAD drawing session.
You will see that with just two AutoLISP functions, you can begin creating programs to draw some basic geometric
shapes. The concepts of local and global variables are introduced, and the lesson ends with some homework questions
to test your understanding of the text.

WHAT IS AUTOLISP?

AutoLISP is a programming language that allows you to customize AutoCAD to meet your own unique requirements. It
is a subset of the LISP (List Processor) programming language, which is used in applications of artificial intelligence
and expert systems. Many functions have been added to the LISP program in order to interface AutoLISP directly to
AutoCAD, and you will see that some AutoCAD commands have been retained as AutoLISP functions.

AutoLISP is an 'interpreted' language rather than a 'compiled' language, which means each program statement is
translated and evaluated as the program is read into the computer. This differs from a compiled language for which a
complete translation into machine code is made prior to a program 'execution' step.

Program statements in AutoLISP are sets of functions and other data that are used with the function contained within
parentheses. An example of such a function and its other data is:

(command "line" pt1 pt2 pt3 pt4 "close")

Here, the function is 'command', which precedes the familiar AutoCAD 'line' command and its sub-command 'close'.
The content of the parentheses is a self-contained statement which causes a line to be drawn between the four points pt1
through pt4, and back to pt1. You must have already defined the meaning of the four points so that AutoCAD can use
them to draw the lines.

AUTOLISP DATA TYPES

Functions such as 'command', are termed 'built-in' or 'internal' functions. They are also known as subroutines, or simply
'subrs'. The subroutine terminology will be more familiar to those of you who have programmed in other languages
such as FORTRAN. The 'other data' that appear with the function are called the 'arguments' of the function.

Page 1 of 64

An Introduction to AutoLISP
Some AutoLISP functions (subrs) require that arguments be supplied in a particular order, and others may include
optional arguments, or no arguments at all. The complete set of functions is listed in the AutoLISP Programmer's
Reference, published by Autodesk, Inc., and supplied to purchasers of AutoCAD.

The data types that AutoLISP recognizes are:

Functions (subroutines, subrs)
 Examples are +, -, *, \, command, princ, setq
 (note that the arithmetic operators are treated as functions by AutoLISP)

Arguments of the functions
 Examples are variables (also known as symbols)
 constants (real (decimal) or integer)
 character strings
 file names (descriptors)
 AutoCAD entity names
 AutoCAD selection sets
 external functions (supplied by the AutoCAD Development System)

AutoLISP data is supplied in the form of lists, where the items of the list can themselves be lists. For instance, in our
example of the command function

 (command "line" pt1 pt2 pt3 pt4 "close")

the seven items contained in the parentheses form a list. Four of these items are the variables (symbols) pt1 through pt4
representing AutoCAD points. Now, since the points contain x, y and z coordinates, they are also lists. The other two
arguments, "line" and "close" are examples of character strings.

AutoLISP Atoms

A single item of a list, which is not itself a list, is called an 'atom' in AutoLISP terminology. According to this
definition, atoms are the fundamental indivisible particles of AutoLISP. Atoms are individual elements such as
symbols, numbers and subrs, and a complete set of the atoms can be displayed on your screens by entering !atomlist at
the AutoCAD command prompt. We will discuss the atomlist more fully later in this series.

EXECUTING AUTOLISP

AutoLISP input can be entered by typing in expressions in an AutoCAD session (at the command prompt), by reading
in the expressions from an ASCII file, or by reading from a string variable which may represent a complete program.

Execution by typing in an AutoLISP expression

Try typing in the following at the AutoCAD command prompt:

 (command "line" "2,3" "4,5" " 6,3" "close")

Don't forget to include the parentheses, or AutoCAD won't recognize that this is an AutoLISP expression! Your
AutoCAD screen should now display a triangle. In this case, the variables used for points have been replaced by
character strings enclosed by double quotation marks. Now erase the triangle and re-type the expression with "c"
replacing the "close" element. The result is the same, because the command function allows regular AutoCAD
commands and subcommands to be entered.

Execution by reading an expression from an ASCII file

Now, shell out of AutoCAD and create an ASCII file (this can be done with EDLIN or the DOS 5 EDIT text editor)
named PROG1.LSP that contains only the above AutoLISP expression. To execute your first AutoLISP program, erase
the previous triangle, then use the following LOAD function at the command prompt:

 Command: (load "prog1")

again, don't forget the parentheses and the double quotes, and you should see the triangle as before. Note here that the
program executes and draws the triangle immediately on being loaded, and this is generally true for AutoLISP programs
that contain only subrs (built-in functions).

Page 2 of 64

An Introduction to AutoLISP
AutoLISP execution from a file containing defined functions

In addition to subrs, it is also possible to define your own functions for AutoLISP. Such functions are called defined
functions to distinguish them from the built-in functions. If a program contains a defined function, when the program is
loaded, the name of the defined function must also be entered in parentheses so that it can be executed.

Try this by changing your prog1.lsp file to read the following:

 (defun test1 ()
 (command "line" "6,3" "8,5" "10,3" "c")
)
Don't forget to include all the parentheses. The AutoLISP subr to define functions is (defun), and in this case the
name of the defined function is test1. Now, if the AutoLISP file is named prog1.lsp, the following sequence is
followed:

 Command: (load "prog1")
 TEST1
 Command: (test1)

Here, the word TEST1 appears immediately when the program is loaded by the first statement, but the program is not
executed until you enter '(test1)', the name of the defined function. We will see more of the defun function later, and the
significance of the empty pair of parentheses will be made clear in the section on 'global and local variables'.

AutoLISP execution with 'C:'

If the AutoLISP defined function name begins with C:, then after loading the program, the defined function becomes a
regular AutoCAD command that can be executed like other AutoCAD commands at the command prompt by entering
its name without parentheses. Try editing the prog1.lsp file to read:

 (defun C:TEST1 ()
 (command "line" "6,3" "8,5" "10,3" "c")
)
then use the following sequence of commands:

 Command: (load "prog1")
 C:TEST1
 Command: test1
The name C:TEST1 is automatically written by AutoCAD when the program is loaded. At this point, the new command
'test1' may be entered at any time. An AutoLISP program containing one or more 'defun' defined functions only needs
to be loaded once in any drawing session.

AutoLISP execution from menu macros

AutoLISP expressions can be contained in menu macros to be executed when the menu label is selected. If you examine
the AutoCAD release 11 menu file ACAD.MNU, you will notice that it contains many AutoLISP programs and
expressions.

I use a personal menu file that I can select from a modified form of the standard ACAD.MNU. A menu item of the form
[aux-menu]^C^Cmenu;aux; is placed at a convenient position (I use the 'File' POP menu) in the standard menu, then I
place a similar command in my 'AUX.MNU' file to allow easy return to the standard menu. My preference is to leave
the standard menu alone, except for this small change so that the regular AutoCAD menus are always available on
demand, and any new material is then placed into the aux.mnu menu.

Here is a sample of my new POP2 menu which you can use for a basic AutoLISP development environment:

 ***POP2
 [Set-ups]
 |
 |
 [Lisp program development]^C^C$p2=p22 $p2=*
 |
 |

 **p22

Page 3 of 64

An Introduction to AutoLISP
 [Set-ups]
 [Edit-LSP]^C^Cshell ed C:/acad11/lisp/test.lsp;graphscr
 [Test-LSP]^C^C(load "/acad11/lisp/test");(test);
 [Print test.lsp]^C^C(load "/acad11/lisp/printest");(printest);
 [~--]
 |

In the above, when the POP2 menu 'Set-ups' is selected, one of the choices is 'Lisp program development', and this
displays a new page that includes items to edit a file named test.lsp in the subdirectory lisp which is contained in the
AutoCAD directory, acad11. The call to the editor in this case is ed, because that is the name of the editor I use. You
may substitute edlin or edit or the name of your favorite text editor (provided that it produces ASCII output) in place of
this.

This menu macro only edits the file called test.lsp, which is the name I give to the current LISP program that I am
developing. To edit any other file, most text editors allow you to choose the filename after the editor has been entered,
so you could simply leave out the filename until the editor is running. Edlin requires a filename to be supplied on
execution, so simply give the shell command and issue the edlin command from the operating system.

The use of separate directories for lisp programs is a good management procedure that I recommend. After the lisp file
has been created or edited, it can be immediately tested by the Test-LSP macro, which loads and executes test.lsp
assuming a defined function named 'test' has been created.

The 'Print test.lsp' option calls a LISP program that prints the test.lsp file. The AutoLISP program to do this has been
adapted from the Autodesk Inc. 'Fprint.lsp' program, which is freely available to you for modification (with the
appropriate acknowledgements to Autodesk). We will examine this program in detail later in the course. In the
meantime, you may use your text editor or the DOS print command to print your program.

GLOBAL AND LOCAL VARIABLES

The default mode of AutoLISP is to define all variables to be 'global', which means that the variables are generally
available not only when the program containing them is executed, but also after the execution is completed. This means
that other programs you write will have access to variables that were defined by previous programs. It is possible to see
the values of global variables by typing their names preceded by ! at the command prompt. For instance, if pt1 is a
variable that represents a point whose coordinates are 2.5,3.0,0.0, then typing !pt1 will display the three coordinate
values.

Global variables appear in the ATOMLIST, and take up memory in the computer. For these reasons, and because you
will probably not want variables such as PT1 to take values left over by previous programs, it is wise not to have global
variables hanging around at the end of execution.

In order to avoid global variables, you may declare the program variables to be 'local' to a particular defined function by
adding their names, preceded by a slash mark and a space (/) in the parentheses which are supplied for that purpose in
the defun statement, thus:

(defun test2 (/ pt1 pt2 pt3 pt4)...........)

will make all of the point variables local. Note here that other variables may be defined as arguments of the defun
function, appearing before the slash mark, for instance,

(defun test3 (a b / pt1 pt2 pt3 pt4).............)

means that the two arguments a and b must be supplied to the defined function test3 before it can be executed, and
instead of executing with (test3) as before, you must supply values, such as (test3 2.2 3.0) so that the variables a and b
can take any value you wish, in this case, 2.2 and 3.0 respectively. We will see examples of programs using global and
local variables in the next lesson in this series.

Home work questions:

1. Why are the closing parentheses in the last 2 defined function examples on the same line as the opening
parentheses, instead of on a separate line as in our previous defined function examples?

2. Are the arguments a and b in the last defined function example local or global variables?

Page 4 of 64

An Introduction to AutoLISP
3. How would you draw circles and arcs with AutoLISP expressions? Use the 'command' function to draw a

circle with the '2-POINT' method, with the points at absolute coordinates 3,4 and 6,4 respectively. Test this on
your computer at the AutoCAD command prompt.

4. Using only the functions 'defun' and 'command', write a program to define a function which draws a triangle
and a circumscribing circle (through the vertices of the triangle). Make the 3 points of the triangle at 3,4; 6,4;
and 5,6 in x,y locations respectively.

In lesson two of this series, "AutoLISP program evaluation and control", you will learn the formats of AutoLISP
functions and arguments, with examples of argument types. Alternative programming methods for nesting functions are
covered with examples of how to make your programs clear and easy to read. You will also learn how and when
AutoLISP evaluates expressions, and how you can control the evaluation by using special 'quote' functions and other
special characters. Finally, you will see how the basic assignment function allows you to create variables in your
programs.

Page 5 of 64

An Introduction to AutoLISP

AutoLISP program evaluation and control
Lesson Two in the CADalyst

University of Wisconsin Introduction to AutoLISP Programming course covers function formats, parenthesis
control and basic error checking.

by
Anthony Hotchkiss, Ph.D, P.Eng.

About this course.

Introduction to AutoLISP Programming is an eight-lesson independent study course, originally published in monthly
installments in CADalyst magazine. Readers may optionally register for the course in order to receive a copy of the
printed course outline, a study guide containing additional AutoLISP examples, reference materials, and solutions to the
practical assignments. On successfully completing an intermediate and a final mail-in project, students will receive
certificates of completion and 4.0 CEU's (continuing education units).

For further information, contact:

Steve Bialek
Engineering Professional Development
University of Wisconsin-Madison
432 North Lake Street
Madison, Wisconsin 53706
(608) 262-1735

article.

LESSON TWO - AUTOLISP PROGRAM EVALUATION AND CONTROL

This months lesson shows you how to write some simple AutoLISP programs. Special text characters are introduced,
and the format of the AutoLISP functions and arguments is explained, with examples of argument types. Alternative
programming methods for nesting functions are covered with examples of how to make your programs clear and easy to
read. You will see how the basic assignment function allows you to create and use variables in your programs. You will
also learn how and when AutoLISP evaluates expressions, and how you can control the evaluation by using special
'quote' functions and other special characters.

Programs are controlled by parentheses rather than by lines, and you will see examples of the correct use of parentheses
and double quotes. Many errors are caused by not closing quotes and parentheses, and this lesson will show you how to
check for these and some other errors. We will show some example programs to illustrate these ideas, and the lesson
ends with some homework questions to test your understanding of the text.

SPECIAL CHARACTERS FOR PROGRAMMING

You already know that AutoCAD menus use special characters like the semi-colon (;) or a blank space for 'return', and
the carat (^) symbol for the 'control' key. AutoLISP uses the following special characters in program statements:

 \n means newline
 \r means return
 \" means the character "
 \t means tab
 \e means escape
 \\ means the character \
 \nnn means the character whose octal code is nnn
 ' means the quote function
 ; precedes comments in a program (until the end of the current line)
 " means the start and end of a literal string of characters
 . A dot preceded by a space is reserved for designating 'dotted-pairs'

The back-slash character (\) is used as a control character for whatever follows it in a 'literal string' of characters. A
literal string of characters means that the characters are merely text, not to be confused with symbols (variables). Literal

Page 6 of 64

An Introduction to AutoLISP
strings are contained within double quotes ("). For example, consider the 'prompt' function which is used to display
messages when AutoLISP is executing:

(prompt "\nWelcome to AutoLISP")
This statement has the effect of starting a new line (because of the \n character), followed by the display of the words
'Welcome to AutoLISP'. The double quotes indicate that the individual words, welcome, to, and AutoLISP, are not
variables that can represent values, but are simply text characters to be displayed in the command area of your
AutoCAD screen.

Try the following examples at your AutoCAD command prompt, but use the spacebar instead of the 'enter' or 'return'
key:

(prompt "This is AutoLISP")
(prompt "\nThis is AutoLISP")

The results should look like the following:

 Command: (prompt "This is AutoLISP") This is AutoLISPnil
 Command:
and:

 Command: (prompt "\nThis is AutoLISP")
 This is AutoLISPnil
 Command:

In the first case, the character string is written on the same line, and in the second case a new line precedes the message.
In both cases, note that the word 'nil' appears after the message. This is because the AutoLISP function 'prompt'
produces (or 'returns') a value of 'nil', and we will see how to deal with this unwanted text later in the series when we
consider the 'print' functions.

Note also that in these examples, the spacebar was used to enter the LISP statements. What would have happened if you
had used the 'enter' key instead? Try it!

You can see that using special characters like \ and " can help in writing character strings to the screen, but what if you
want to use these control characters as part of the text string itself? That is why the characters \\ and \" appear in the list
of special characters. It is possible that you may want to refer to DOS pathnames, in which case the back-slash character
would be part of the name. An example is

..."\acad\lisp\myfile.lsp"...
which would have to be written as

..."\\acad\\lisp\\myfile.lsp"...
We will discuss the subject of file handling in lesson six of this series, and the other special characters will be
introduced in appropriate places later in this series.

AUTOLISP FUNCTION FORMATS AND ARGUMENTS

Functions, also known as subroutines, or simply 'subrs' are subject to some rules and restrictions. The subrs must be
contained within parentheses, and the function name must immediately follow the open parenthesis. The 'arguments' of
the function (discussed in lesson one), contain the required data for the function.

Some AutoLISP functions (subrs) require that arguments be supplied in a particular order, and others may include
optional arguments, or no arguments at all. The number of arguments depend on the actual function being used.

Functions are evaluated by AutoLISP, and they return certain values, or, as we have seen in the case of the 'prompt'
function, they may return 'nil'. For example, consider the following functions:

(terpri) means 'terminate printing', is equivalent to a 'newline', and requires no arguments. This function returns 'nil'.

(sin angle) requires one argument (an angle value in radians), and returns the sine of the angle

(* number number number) may have any number of arguments, and returns the product of all the numbers. This is
the multiplication function.

(setq var1 expr1 var2 expr2) is the basic assignment function which can have any number of pairs of variables and
expressions. This function assigns the content of the nth expression to the nth variable, and returns the value of the last
expression in the list.

Page 7 of 64

An Introduction to AutoLISP
(defun name (variable list) Function_definition_statements) the first argument is the name of the defined function, the
variable list may be empty or may be any number of global and local variables (see lesson one). An unlimited number
of Function_definition_statements can be included, and defun returns the name of the function.

NESTING OF FUNCTIONS

Controlling the program sequence with parentheses allows you to 'nest' parentheses inside each other, so that LISP
functions can exist inside other functions. The following example will show the many different ways in which a result
can be obtained to a programming problem.

Suppose we want to evaluate the formula

 X = -b + ((((b**2)-4ac)**(.5))/2a)

for the case where

 a = 1.5
 b = 2.0
 c = 0.5
we could use the following set of functions:

 (setq a 1.5)
 (setq b 2.0)
 (setq c 0.5)

Here, we use the basic AutoLISP assignment function setq, in which only one variable and one expression is set for
each 'setq' function. We can then continue with some nested functions where the multiplication function is included in
the setq function:

 (setq b2 (* b b))
 (setq ac4 (* 4 a c))
 (setq a2 (* a 2))
Next, we can subtract the values under the square-root sign by setting a new variable 'd':

 (setq d (- b2 ac4))
Now we introduce the square root function 'sqrt', and set another new variable 'e':

 (setq e (sqrt d))
We can continue with the following, setting another new variable 'f':

 (setq f (/ e a2))
 (setq x (- f b))
Our final program looks like:

 (setq a 1.5)
 (setq b 2.0)
 (setq c 0.5)
 (setq b2 (* b b))
 (setq ac4 (* 4 a c))
 (setq a2 (* a 2))
 (setq d (- b2 ac4))
 (setq e (sqrt d))
 (setq f (/ e a2))
 (setq x (- f b))
Note how the multiplication, division and subtraction functions are nested inside of the assignment function. This
program is simply a collection of AutoLISP functions, and will execute immediately on loading with (load "filename"),
where 'filename' is the name of the file ending in the file extension .lsp, as covered in lesson one of this series.

Now, because the format for setq allows us to group together any number of pairs of variables and expressions, this
program could be written as:

 (setq a 1.5

Page 8 of 64

An Introduction to AutoLISP
 b 2.0
 c 0.5
 b2 (* b b)
 ac4 (* 4 a c)
 a2 (* a 2)
 d (- b2 ac4)
 e (sqrt d)
 f (/ e a2)
 x (- f b)
Which is clearer because fewer parentheses are used and it is obvious which variables and expressions belong to each
other.

This could be written in the much less pleasing form:

(setq a 1.5 b 2.0 c 0.5 b2 (* b b) ac4 (* 4 a c) a2 (* a 2) d (- b2 ac4) e (sqrt
d) f (/ e a2) x (- f b))

Another possibility is to use a nesting approach in order to set the value of x directly as in:

 (setq a 1.5
 b 2.0
 c 0.5)
 (setq x (- (/ (sqrt (- (* b b) (* 4 a c))) (* a 2)) b))
Note that for every open parenthesis there must exist a closing parenthesis, and the evaluation of the program is
controlled by the placement of the parentheses. These examples illustrate that programs can be made simple and
readable, or complex and unreadable, and it is not usually worthwhile saving lines of code by making your programs
unnecessarily complicated. The last example eliminates the need to invent new variables, but is somewhat difficult to
check. However, it does have a certain readability which is closer in form to the original equation than the other
examples.

AN AUTOLISP PROGRAM TO DRAW A BOX

AutoCAD draws points. lines, arcs and plines, but not boxes. Here we give a very simple program to draw a square box
of any size. Variables are assigned in two ways: by using the setq function, and provided as an argument to the defined
function. You will also see some new subrs and their usage.

The following program is annotated by using comments. Comments begin with a semi-colon, and continue until the end
of the line on which they appear.

 ; BOX1.LSP, a program to draw a square with origin and length of a side.
 ;
 (defun box1 (len) ; The variable 'len' means the length of side
 (setq pt1 (getpoint "\nEnter the origin point: ") ; The 'getpoint' function
 pt2 (polar pt1 0.0 len) ; Polar requires an angle in radians
 pt3 (polar pt2 (/ pi 2.0) len) ; 'pi' is built in to AutoLISP
 pt4 (polar pt3 pi len) ; polar, base-point, angle, distance
) ; End of setting variables for points
 (command "line" pt1 pt2 pt3 pt4 "c") ; Drawing the box
) ; End of the 'defun'

To execute this program, use:

 (load "box1")
 (box1 nnn)
where nnn is the length of side of the box, and will be substituted for the 'len' variable.

Note that when a variable such as 'len' is supplied as an argument to the defined function, you can not make the defined
function a command by naming it with the C: prefix.

When this program executes, you will be prompted to select the lower-left corner of the box by the prompt "Enter the
origin point : ". You may pick a position with the cursor, (using an osnap mode or grid and snap if desired) or enter the
coordinates of the point via the keyboard in regular AutoCAD format, as though you were supplying the from or to
points of a line. The box will then be drawn automatically. You can draw as many boxes as you like, after the program
has been loaded, by using the (box1 nnn) format.

Page 9 of 64

An Introduction to AutoLISP
The new functions introduced here are 'getpoint' and 'polar'. The syntax for the getpoint function is:

(getpoint base-point prompt-string)
The base-point and prompt-string are optional arguments to this function. The getpoint function pauses for user input of
a point, and returns the point selected. If a prompt-string is supplied, it will be displayed as though it were an AutoCAD
prompt. If the optional base-point is supplied (this may be pre-defined as a variable, or may be given as a list of
coordinates in the appropriate format), then AutoCAD draws a 'rubber-band' line from the base-point to the current
cursor position.

The format of a point in AutoLISP is a list of the coordinates of the point. After the box program has executed, enter
!pt1 at the command prompt, and you will see the list of coordinates for the point 'pt1' displayed as follows:

 Command: !pt1
 (4.48057 7.35181 0.0)
 Command:
Note that the value of pt1 (and any other of the point variables) can only be displayed here because they are 'global'
variables, and have been added to the atomlist. If these variables were defined to be local, by writing the defined
function as

(defun box1 (len / pt1 pt2 pt3 pt4)...............
then entering !pt1 at the command prompt would display 'nil'.

The polar function has the following argument list:

(polar base-point radian-angle distance)
There are no optional arguments, and the base-point and angle are with reference to the current user coordinate system.
The polar function returns a point as a list of real numbers contained in parentheses.

AUTOLISP EVALUATION AND QUOTED LISTS

The AutoLISP evaluator takes a line of input, evaluates it, and returns a result. A line of input begins with an open
parenthesis and ends with the matching closing parenthesis. Any nested lines of input are evaluated and a result is
returned. Results cannot be returned until a matching closing parenthesis is found, and so the evaluation returns results
for the innermost nested functions first.

Generally, variables evaluate to their current values, and constants, strings and subrs evaluate to themselves. Lists are
evaluated according to the first element of the list, which is normally a subr or a defined function. The remaining
elements in a list are taken as arguments of the list.

Remember that a list is contained within parentheses, and the lists that we have seen so far have been either defined
functions or subrs (built-in functions). Now consider the following list:

(command "line" pt1 pt2 pt3 pt4 "c")
Here, the list has a subr as its first item, so the remaining elements are taken to be arguments of the subr. The 'command'
subr which we first encountered in lesson one, provides a method for submitting AutoCAD commands (in this case
'line'), subcommands ('c'), and 2D and 3D points (pt1 through pt4). The commands and subcommands are actually
strings (contained in double quotes), but let us examine the point variables. We have already seen that pt1 has the
format (4.48057 7.35181 0.0) which is a list of three real numbers which represent the x, y, z coordinates of a point.

It appears that the list represented by pt1 is not compatible with the criterion for evaluation of lists given above, since
the first element of the list is neither a defined function nor a subr. The same problem occurs in the 'polar' list, which
also uses the list of real numbers to represent the base-point. Clearly, we need a way of expressing lists which are not
functions, and which are not evaluated.

How can we set the value of a point directly in the form (setq pt1 (2.0 3.0 0.0))? Try entering

(setq pt1 (2.0 3.0 0.0))
at the command prompt. The result is an error, and your command prompt area will display (use F1 to flip to the text
screen):

 Command: (setq pt1 (2.0 3.0 0.0))
 error: bad function
 (2.0 3.0 0.0)
 (SETQ PT1 (2.0 3.0 0.0))
 Command:
Here, AutoLISP has attempted to evaluate the (2.0 3.0 0.0) as a subr or defined function, and does not recognize it as a
function.

Now enter

Page 10 of 64

An Introduction to AutoLISP
(setq pt1 (quote (2.0 3.0 0.0)))

Next enter
(setq pt2 '(2.0 3.0 0.0))

These last two functions both return the list (2.0 3.0 0.0), because the 'quote' function allows us to define a list which
will not be evaluated. As shown in the above, there are two formats, (quote expression) and 'expression.

The quote function returns the expression unevaluated, so the setq function in the example assigns the actual quoted
expression to the point variable. Without the quote function, AutoLISP attempts to evaluate the list (2.0 3.0 0.0) as
though the first element (2.0) were a subr or defined function, hence the failure of the first attempt at assigning a list to
pt1.

In a similar manner, it would be possible to write the polar function in the form

(polar '(3 5 0.0) (/ pi 2.0) 3.5)
and the returned result would be (3 8.5 0.0).

SOME BASIC ERROR CHECKING

If you don't match your closing parentheses with your open parentheses, AutoLISP displays a prompt of the form n>
where n is the number of missing closing parentheses. The way to deal with this in the simplest case is to enter the
missing parentheses, such as))) if n is 3, or alternatively enter Control-C (^C) to cancel. However, a common mistake is
to leave out closing double quotes, in which case AutoLISP will interpret any following parentheses as text strings and
the results of entering closing parentheses will be unpredictable. If the error prompt is 3> and entering a single closing
parenthesis does not reduce this to 2>, you can enter a double quote followed by another closing parenthesis. Now the
number should reduce, and you can repeat the process until the program finishes execution. It is extremely unlikely that
a program with such errors will execute properly, so you should edit the program and re-load and test it.

When you are writing your first programs, you can always test individual statements by entering them at the command
prompt to make sure that they work before including them in your program (.lsp) file.

It is always a good idea to ensure that your variables are being assigned correctly by checking their values with the !
character at the AutoCAD command prompt after a program has run, or during the development of a program. You
don't have to write a complete program in order to make some of these checks.

You can also 'comment out' any lines of your program by entering a semi-colon at the beginning of any line, but make
sure that you always have matched parentheses at all times.

Home work assignments
1. Use the defun, setq, polar, getpoint, command and arithmetic functions (*, +, -, /) to write a program that will draw an
"I" beam cross section as shown in figure HW1. Let the user supply the height H of the cross-section, and the origin
point.

2. How can you add fillets to your I-beam cross section?

3. How would you automatically dimension the "I" beam of question1? Add this feature to your program. Hint - use the
command function for the appropriate dimension types and define extra points with setq in order to specify the
dimension locations.

In lesson three of this series, "Manipulating lists with AutoLISP", you will learn more programming techniques and
some new functions for manipulating lists. You will see how to use individual x, y or z components of point lists and
how to construct and append elements to lists. Example programs will illustrate how you can work with lists.

Page 11 of 64

An Introduction to AutoLISP
Manipulating lists with AutoLISP

Lesson Three in the CADalyst/University of Wisconsin Introduction to AutoLISP Programming course shows
you how to construct and work with lists.

by
Anthony Hotchkiss, Ph.D, P.Eng.

About this course.

Introduction to AutoLISP Programming is an eight-lesson independent study course, originally published in monthly
installments in CADalyst magazine. Readers may optionally register for the course in order to receive a copy of the
printed course outline, a study guide containing additional AutoLISP examples, reference materials, and solutions to the
practical assignments. On successfully completing an intermediate and a final mail-in project, students will receive
certificates of completion and 4.0 CEU's (continuing education units).

For further information, contact:

Steve Bialek
Engineering Professional Development
University of Wisconsin-Madison
432 North Lake Street
Madison, Wisconsin 53706
(608) 262-1735

For further information, contact, see the enrollment form attached to this article.

LESSON THREE - MANIPULATING LISTS WITH AUTOLISP

In this months lesson you will learn more programming techniques and some new functions for manipulating lists. You
will see how to use individual x, y or z components of point lists and how to construct and append elements to lists.
Example programs will illustrate how you can work with lists, and the lesson ends with some homework questions to
test your understanding of the text.

PROGRAM STRUCTURE AND REDUCING THE NUMBER OF VARIABLES

In lesson two we wrote a program to draw a square box, and here we will use that simple program as an illustration of
how to reduce the number of variables used in a program. The BOX1.LSP program, uses the point variables pt1, pt2,
pt3 and pt4, which are assigned and used later in the 'command line' function.

; BOX1.LSP, a program to draw a square with origin and length of a side.
;
(defun box1 (len) ; The variable 'len' means the length of side
 (setq pt1 (getpoint "\nEnter the origin point: ") ; The 'getpoint'
function
 pt2 (polar pt1 0.0 len) ; Polar requires an angle in radians
 pt3 (polar pt2 (/ pi 2.0) len) ;'pi' is built in to AutoLISP
 pt4 (polar pt3 pi len) ; polar, base-point, angle, distance
) ; End of setting variables for points
 (command "line" pt1 pt2 pt3 pt4 "c") ; Drawing the box
) ; End of the 'defun'

It is possible to write this program using only one point variable as in the following listing:

; BOX11.LSP, a program to draw a square with origin and length of a side.
(defun box11 (len)
 (setq p (getpoint "\nEnter the origin point: "))
 (command "line" p

Page 12 of 64

 (setq p (polar p 0.0 len))

An Introduction to AutoLISP
 (setq p (polar p (/ pi 2.0) len))
 (setq p (polar p pi len)) "close")
) ; End of the 'defun'

Notice how the command function is used in this case. The point variable 'p' is defined initially by the 'getpoint'
function, but during the line command, the point is re-defined with reference to itself. Each of the setq assignments
returns the value of its expression (the new point definition), which is used as successive input to the AutoCAD line
command.

The getpoint function cannot be used inside the command function, and that is why we defined the first point outside
of the command function before starting to draw the line. Note that the setq function returns the value of its last
expression, which means that the point assignments must be made with separate setq functions, rather than with a list of
pairs of variables and expressions.

Reducing the number of variables in your programs is a convenience, but there are times when you will need to retain
separate point variables, especially if you want to use parametric programming with automatic dimensioning. The box
programs are simple forms of parametric programs, although the only parameter is the length of side of the box. If you
want to dimension the box, you must have access to the points which were defined at the corners of the box. For the
square box, only one side need be dimensioned, but you will need to define a point to specify the position of the
dimension line.

Let's suppose that you want to use a vertical dimension on the right-hand side of the box, with the vertical dimension
line 0.75 inches from the box, as shown in figure 3.1. You will need to use a program of the form of our BOX1.LSP
above, with an extra point, pt5, defined to be at 0.75 inches from point 2 (pt2), so the line:

(setq pt5 (polar pt2 0.0 0.75))

should be added. The program would then include the command function for dimensioning, such as:

(command "dim1" "ver" pt2 pt3 pt5 "")

We used the form DIM1 here, so that the dimension mode would automatically terminate after placing the single
dimension. Note that there is no such command as 'linear' for dimensions, and the subcommand "ver" was used directly
after the "dim1" command. The rest of the sequence defines the endpoints of the side of the box and the position of the
dimension line, followed by a return (2 double quotes) to accept the dimension calculated by AutoCAD. The final
program, which produced the box of figure 3.1, would look like:

; BOX31.LSP, a program to draw and dimension a square with origin
: and length of a side.
;
(defun box31 (len) ; The variable 'len' means the length of side
 (setq pt1 (getpoint "\nEnter the origin point: ") ; The 'getpoint'
function
 pt2 (polar pt1 0.0 len) requires an angle in radians ; Polar
 pt3 (polar pt2 (/ pi 2.0) len) ;'pi' is built in to AutoLISP
 pt4 (polar pt3 pi len) ; polar, base-point, angle, distance
) ; End of setting variables for points
 (command "line" pt1 pt2 pt3 pt4 "c") ; Drawing the box
;
; Dimensioning the box
;
 (setq pt5 (polar pt2 0.0 0.75)) ; Setting the dimension line position
 (command "dim1" "ver" pt2 pt3 pt5 "")
) ; End of the 'defun'

MANIPULATING LISTS

The functions for creating and manipulating lists are

Page 13 of 64

An Introduction to AutoLISP
(list expr1 expr2 expr3.....) (cons item list)
(car list) (cdr list) (cadr list) (caar list) (caddr list) (cadar list)
...
(length list) (listp item)
(last list) (nth integer list)
(append list1 list2) (member expr list) (reverse list)

The functions list and cons are used to create lists, and the other functions manipulate and return information about the
lists.

List can have any number of expressions, and it returns the list of all of the expressions in sequence. For instance, (list
4.5 3.5 0.0) returns the list (4.5 3.5 0.0). The statement

(setq pt1 (list 4.5 3.5 0.0))

assigns the list (4.5 3.5 0.0) to pt1, and also returns (4.5 3.5 0.0).

The function car returns the first item of a list, so that if pt1 is the list of the x, y, and z coordinates of a point, (car pt1)
would return the value of the x-coordinate of the point (4.5 in this case)

The function cdr returns all of the items in a list except the first item, so that in our example of the list pt1, (cdr pt1)
returns the list containing the y and z coordinates of the point pt1 (this would take the form (3.5 0.0) in our example
because lists are contained within parentheses, as we discussed in lesson two of this series).

Consider the following statements:

 (setq pt2 (list 2.0 3.0 0.0))
 (setq pt2x (car pt2))
 (setq pt2yz (cdr pt2))
 (setq pt2y (car pt2yz))

The value of pt2 is (2.0 3.0 0.0), the value of pt2x is simply 2.0 (the first item of the list of pt2), the value of pt2yz is
(3.0 0.0) because it is the list of all except the first element of pt2, and finally the value of pt2y is 3.0 (the first element
of the list of pt2yz).

We could combine the last two statements as:

(setq pt2y (car (cdr pt2)))

according to the usual techniques for nesting functions in AutoLISP, and the result for pt2y will be 3.0 as before.

We may therefore always extract the second item of a list of any length simply by using the combined functions (car
(cdr list))

Can you see how to extract the third item of a list which contains any number of items using the car and cdr functions in
some combination?

The solution is (car (cdr (cdr list)))

AutoLISP provides functions which are combinations of car and cdr. These functions are formed by retaining the initial
'c' and the final 'r', and combine the 'a' and 'd' according to the order in which the 'a' of car and the 'd' of cdr appear in the
intended combinations of car and cdr. Thus cadr is equivalent to (car (cdr)) and caddr returns the same result as
(car (cdr (cdr ...))).

Using this terminology, (car list) returns the first element of a list, (cadr list) returns the second item of the list, and
(caddr list) returns the third item of the list. Many other such combinations are possible, and AutoLISP allows nesting
any combination up to four levels deep in a single function.

A rectangle example, using LIST, CAR, and CADR functions.

; RECTANG1.LSP program to draw a rectangle with

Page 14 of 64

An Introduction to AutoLISP
; lower left and upper right
points.
;
(defun rectang1 ()
 (setq pt1 (getpoint "\nLower left point:")
 pt3 (getpoint "\nUpper right point:")
 p2x (car pt3)
 p2y (cadr pt1)
 pt2 (list p2x p2y)
 pt4 (list (car pt1) (cadr pt3))
) ; end of point assignments
 (command "line" pt1 pt2 pt3 pt4 "c")
) ; end of defun rectang1

Here, we get the lower left and upper right points from the user. The points may be entered from the keyboard or by
picking a position with the cursor and optionally snapping to a gridpoint or using an osnap mode. We name the lower
left and upper right points pt1 and pt3 respectively so that we retain the same ordering of points as was used for the box
example.

Notice now that we can separately define the x and y coordinates of the second point pt2 by defining p2x and p2y as
shown. The car and cadr functions return the first and second items of a list, and it is convenient to regard these as the
x and y components of points. This is a similar process to using the .x and .y filters in geometry construction. We then
define pt2 to be the list of p2x and p2y. We can of course extend this approach to the three dimensional case by
including the z-coordinate (using caddr) in our list, but we assume here that all points are at the same z-level.

In our definition of point 4, pt4, we have by-passed the step of assigning variable names to the x and y coordinates, and
have made the car and cadr functions expressions of the list function. As you become more comfortable with LISP
programming you may decide to nest functions in this way, but don't get too complicated because you may need to
modify and update your programs later on, and they should be readable!

The nth item of a list.

The function (nth integer list) returns the nth element of list, where integer is the number of the element to return.
AutoLISP numbers the elements of lists from zero upwards, so the first item of a list is obtained by (nth 0 list). If x =
(3.2 4.5 0.0), (nth 2 x) returns 0.0 and (nth 0 x) returns 3.2.

If pt11 = (2.0 2.5 0.0) and pt22 = (3.0 4.5 0.0),
(setq pt33 (list (nth 0 pt11) (nth 1 pt22) 1.0)) would set pt33 = (2.0 4.5 1.0).

The cons and append functions

(cons item list) returns a list having item as the first element, and the elements of list as its remaining elements. In this
sense, the cons function adds an item to the front of a list. For example, type the following at the AutoCAD command
prompt:

 (setq aa '(1 2 3 4 5 6))
 (setq bb (cons 99 aa))

The first statement shows how a list can be created with the quote function, as we described in lesson 2 of this series.
The list returned is (1 2 3 4 5 6).

The second statement returns the list (99 1 2 3 4 5 6)

If list is an atom (has only one element), then cons returns a "dotted pair", which is a special structure in AutoLISP.
Dotted pairs are the way in which AutoCAD associates items together in its data structure, where a 'group code' number
is associated with such items as object type, layer names etc., and is beyond the scope of this introductory course.

When you use real numbers as the arguments for functions or in lists, you cannot omit leading zeros before decimal
points, otherwise AutoLISP will assume that you intend a dotted pair, and this will result in the error message 'invalid
dotted pair'.

Page 15 of 64

An Introduction to AutoLISP
The append function adds an item to the end of a list, and is often used in programs to store many point positions in a
single list so that the points can be used in the construction of polylines and general mesh surfaces. One example that
we will see more of in later lessons is that of a cross-hatching program that is able to perform cross hatching without the
need to break lines that are not end-to-end. A useful and fairly common technique to cross hatch in this situation is to
create a polyline by tracing over existing geometry, and then to cross hatch the polyline. Here is a part of the program in
which a series of points is being added (appended) to a pointlist.

; Start collecting data and set layer to 'noplot'
;
 (command "LAYER" "T" "noplot" "S" "noplot" "")
 (setq pdiff 1)
 (setq porig (getpoint "\n origin"))
 (setq ptlst nil)
;
; Make a list of points for the 'pline'
;
 (while
 (> pdiff 0)
 (setq p (getpoint "\n next point"))
 (setq ptlst (append ptlst (list p)))
 (setq pdiff (distance p porig))
); end of 'while' loop
;
; Draw a pline as a boundary for hatching
;
 (command "PLINE" porig "W" 0 0 (foreach p ptlst (command p))
)

In this fragment of our program, the layer 'noplot' is first thawed and set as the current layer, then an 'origin' point is
defined. The user is requested to pick a series of 'next points' in order to create a closed polyline. The variable pdiff is
used to check whether a selected point is coincident with the 'origin' point. If the distance 'pdiff' is zero, the program
comes out of a 'while' loop (more of that later!) and no more points are added to the point list. Finally the poly line is
drawn by supplying each point in turn to the pline command, using another type of repeating 'loop' known as the
foreach function (again, more of that later).

Be careful when adding points to a point list like this that you add the points as 'lists' with the list function, as we have
done in the cross hatch program example. To see the significance of this, try the following at the command prompt:

First assign three points with

(setq pt1 '(2.72 1.39 0.0) pt2 '(4.43 1.39 0.0) pt3 '(4.43 2.85 0.0))

then collect those points into a point list with:

(setq ptlst nil)
(setq ptlst (append ptlst (list pt1)))

this returns ((2.72 1.39 0.0)). Note the double parentheses! Note also that we could in fact initialize our ptlst with the
assignment (setq ptlst (list pt1)) instead of appending the first point to a null list.

(setq ptlst (append ptlst (list pt2)))

this returns ((2.72 1.39 0.0) (4.43 1.39 0.0)). Note that we now have a list of 2 items, each of which is itself a list of 3
items. Now try adding the third point without the 'list' function:

(setq pt3 (append ptlst pt3))

this returns ((2.72 1.39 0.0) (4.3 1.39 0.0) 4.43 2.85 0.0)

In the last case, the coordinates of point 3 have not been made into a list, and the three coordinates appear as separate
items, which is not the intended format. If we now extract the third item of this list we will return the number 4.43
instead of the intended list of three numbers.

Page 16 of 64

An Introduction to AutoLISP
The other functions for dealing with lists are:

(member expr list) expr is one of the elements of list. The function returns a list with expr as the first element, followed
by all subsequent elements of list.

If expr is not part of the list, nil is returned. For example:

 (setq test1 (list "TONY" 2.5 3.4 "ABC"))

 returns the list: ("TONY" 2.5 3.4 "ABC")

 (member 2.5 test1) returns: (2.5 3.4 "ABC")

 (member "LUCY" test1) returns: nil

(last list) returns the last element in list. (last test1) in the above example returns "ABC"

(length list) returns an integer which is the number of elements of list.

 (length test1) returns 4.

(listp item) returns T if item is a list, and nil if item is not a list.

 (listp test1) returns T; (listp "ABC") returns nil.

The letter T is listed in the atomlist and is used by AutoLISP in testing whether something is 'true' or 'false'. The test is
part of conditional testing and is related to the use of logical functions, which is the subject of a later lesson in this
series. AutoLISP actually only tests whether an item evaluates to a nil or a non-nil result. Any returned value that is not
nil will be tested as 'true', and will take the value T.

It is a wise precaution not to use the letter 'T' as a variable name, although in functions such as listp and in uses related
to logical functions, T is returned unevaluated, so no real harm is done.

(reverse list) returns list with its elements in reverse order.

Home work assignments

1.
Elements of lists may also be lists.

If A = (a1 a2 a3 a4), a1 = (aa bb cc), a2 = (dd ee), and a3 = (ff gg hh), what do the following functions return?

 (caar A); (cadar A); (cdadr A); (cddar A); (cdaddr A); (length A);
 (length (cdr A)); (last (car A)); (reverse (cddr A))

2.
What is the difference between (cons item list) and (list item list)?

3.
When would you use the quote function versus the list function to create a list?

4.
Write two programs using car and cdr functions to draw 'infinite' length horizontal and vertical lines respectively at any
user defined position. (The user should be prompted to indicate a position.)

In lesson four of this series, "AutoLISP functions for math and geometry", we present the math functions, and some
new functions for drawing geometric shapes with user interaction. Some new 'GET..' functions will be introduced to
assist with geometric definitions, and example programs will illustrate the new functions. Homework assignments will
test your knowledge of the text.

Page 17 of 64

An Introduction to AutoLISP

Page 18 of 64

An Introduction to AutoLISP

AutoLISP Functions for Math and Geometry
Lesson Four in the CADalyst/University of Wisconsin Introduction to AutoLISP Programming course covers

math functions and geometric shapes.
by

Anthony Hotchkiss, Ph.D, P.Eng.

About this course.

Introduction to AutoLISP Programming is an eight-lesson independent study course, originally published in monthly
installments in CADalyst magazine. Readers may optionally register for the course in order to receive a copy of the
printed course outline, a study guide containing additional AutoLISP examples, reference materials, and solutions to the
practical assignments. On successfully completing an intermediate and a final mail-in project, students will receive
certificates of completion and 4.0 CEU's (continuing education units).

For further information, contact:

Steve Bialek
Engineering Professional Development
University of Wisconsin-Madison
432 North Lake Street
Madison, Wisconsin 53706
(608) 262-1735

LESSON FOUR - AUTOLISP FUNCTIONS FOR MATH AND GEOMETRY

In this month's lesson, we present the math functions, and some new functions for drawing geometric shapes with user
interaction. Some new 'GET..' functions are introduced to assist with geometric definitions, and example programs
illustrate the new functions. Homework assignments will test your knowledge of the text.

MATH FUNCTIONS

We have already seen some of the Math functions for simple arithmetic in lesson two of this series. In that lesson, some
examples of the add, subtract, multiply and divide functions were given for two numbers. Here we give some general
rules for their use:

 (+ number number ...) (- number number ...)
 (* number number ...) (/ number number ...)

In all cases, for two numbers only, the first number is operated on by the second number, and the result is returned. For
example, in the case of the division, the first number is divided by the second number and the quotient is returned, and
for subtraction the first number has the second number subtracted from it.

When more than two numbers are given, the operation is repeated by each number in turn, so for division, the quotient
of the first two numbers is divided by the third number, and this quotient is divided by the next number, and so on.

If all of the numbers are integers, an integer is returned, so be warned that in the case of division, some rounding off
will occur.

If any of the numbers is a real (having a decimal point), a real number is returned, so if all numbers are real, or if they
are any combination of integers and reals, a real number is returned.

If only one number is given, that number is returned except that in the subtraction case, the sign of the number is
changed, so that (- 5) returns -5, and (+ 5), (* 5), (/ 5) all return 5 without any change of sign.

Incrementing and Decrementing

The functions (1+ number) and (1- number) are used to increment or decrement a number by 1.

Page 19 of 64

An Introduction to AutoLISP
(1+ number) returns number increased by 1, and is a shorthand version of the equivalent (+ number 1), where number
may be real or integer. (1- number) is the equivalent of (- number 1).

For example, it is often required to use a 'counter' to count the number of times that a set of operations is to be
performed. This is generally done in connection with a 'looping' function, which we will consider later in this series. We
may want to set the initial value of a counter, and then use it to control the number of times a looping function executes
as follows:

 (setq count 16)
 (...... ;entering an iteration loop
 (setq p (list (+ (car p) delta) (cadr p)))
 (setq ptlst (append ptlst (list p)))
 (setq count (1- count))
) ; end of the iteration loop

This example assumes that some kind of test is performed so that the number of iterations is controlled. The variable
'count' is first set to 16, then the looping begins (the looping function is not defined here - we will leave it until later),
and at the end of the loop, count is decremented by 1. In the meantime a point 'p' has its x-coordinate changed by an
amount 'delta' (using the + function), and the resulting point is appended to a pointlist 'ptlst'.

Trigonometric functions

The basic trigonometry functions are:

(sin radian_angle) (cos radian_angle) (atan number1 number2)

Angles are measured in radians by AutoLISP functions, as indicated here. The sin function returns the sine of the radian
angle, and the cos function returns the cosine of the radian angle.

The atan function can have one or two arguments. For the case of one argument, atan returns the arctangent of the
number in radians. If two numbers are supplied, atan returns the arctangent of the first number divided by the second.

The symbol PI is known to AutoLISP, so in the following:

 (setq ang1 (/ pi 3.0))
 (setq res1 (sin ang1)) would return 0.866025
 (setq res2 (cos ang1)) would return 0.5

Converting angles in degrees to radians

Here is a defined function that will allow you to work in degrees instead of radians:

 (defun dtr (ang)
 (* pi (/ ang 180.0))
)

This function requires one argument, the angle in degrees, and returns the angle converted to radians.

To use the 'dtr' function, enter (dtr angle) where the angle is in degrees. With this function:

(setq x (sin (dtr 60))) sets x = 0.866025

Note the use of the defined function argument (ang) here is similar to the 'len' argument that we supplied in the box and
rectangle programs of the earlier lessons. It means that every time the function is used, a value must be supplied. The
supplied value then replaces the original argument (in this case 'ang'), and is operated upon accordingly, so in the dtr
function, any supplied value will be divided by 180, then multiplied by PI.

Page 20 of 64

An Introduction to AutoLISP
Other math functions

The other math functions are the square-root (sqrt number), the natural logarithm (log number), and the absolute value
(abs number).

GEOMETRY WITH AUTOLISP

Functions for geometry are:

 (polar base_point radian_angle distance)
 (angle point1 point2)
 (distance point1 point2)
 (inters point1 point2 point3 point4 argnil)
 (redraw)

The polar function was introduced in our lesson two, and is the basic method of drawing by defining points at arbitrary
angles.

The angle function returns the angle in radians drawn between an imaginary line connecting point1 & point2, and the
positive x-axis. Angles are measured positive counter-clockwise from the x-axis.

The distance function returns the distance between point1 and point2.

The inters function returns the intersection point of two imaginary lines connecting point1-point2, and point3-point4.
The 'argnil' argument is optional. If it is supplied as 'NIL', the intersection point will be returned even if the imaginary
lines do not intersect. If 'argnil' takes any other value, or is omitted, then the lines must intersect in order to return the
required point.

The redraw function, without any arguments, behaves just as the AutoCAD redraw. Note that the redraw function can
have arguments which allow it to redraw named entities, but the use of named entities is beyond the scope of this
introductory course.

Let's have a look at an example to illustrate these functions. Figure 4.1 shows a square drawn at some angle 'theta', with
a side length of 'len'. Two circles are drawn inscribed and circumscribed respectively. This program does not use any
arguments. The length of the side of the square 'len' is supplied with the distance function, which returns a real number,
(the distance between two points). Two reference points P1 and P2 are obtained from the user with the getpoint
function. The second getpoint uses point P1 as a reference from which the second point is rubber-banded. The angle of
orientation of the square is also defined by the points P1 and P2.

The program EX4_1.LSP is as follows:

; EX4_1.LSP
; A program to draw a square with inscribed and circumscribed circles.
;
(defun dtr (ang)
 (* pi (/ ang 180.0))
)
;
(defun ex4_1 ()
 (setq p1 (getpoint "\nPlease enter the lower left point: ")
 p2 (getpoint p1 "\nDrag the length of side and angle: ")
)
 (setq len (distance p1 p2) ; calculate the length 'len'
 theta (angle p1 p2) ; and the angle 'theta'
)
 (setq p3 (polar p2 (+ theta (dtr 90)) len)
 p4 (polar p3 (+ theta (dtr 180)) len)
)
 (command "line" p1 p2 p3 p4 "c") ; draw the square

Page 21 of 64

An Introduction to AutoLISP
 (setq pcenter (inters p1 p3 p2 p4)) ; find the circle center point
 (command "circle" pcenter (/ len 2)) ; draw the inner circle
 (command "circle" pcenter p1) ; draw the outer circle
 (redraw)
) ;end of the defun ex4_1.

When this program is loaded, the command/prompt area displays:

 Command: (load "/acad11/lisp/ex4_1")
 EX4_1
 Command:

The dtr function is not displayed because the load function returns the value of the last expression in the file. In this case
the last expression is the defined function ex4_1, and the defun function returns the name of the function being defined.

In the above example, the circles were drawn by establishing the center point of the circle with the intersection function.
There are several alternatives for defining the center point, as follows:

(a) using car and cadr to calculate a distance to the circle center from point 1:

 .
 .
 (setq half_len (/ len 2))
 (setq pcx (+ (car p1) half_len))
 (setq pcy (+ (cadr p1) half_len))
 (setq pc (list pcx pcy))
 (setq dist_to_cen (distance p1 pc))
 (setq pcenter (polar p1 (+ (dtr 45) theta) dist_to_cen))
 .

(b) calculating the diagonal distance to the center with the square root using Pythagoras:

 .
 .
 (setq diagonal (sqrt (* len len)))
 (setq angle2 (angle p1 p3))
 (setq pcenter (polar p1 angle2 diagonal))
 .

(c) it is also possible to draw the circles directly without calculating a center point!

 .
 .
 (command "line" p1 p2 p3 p4 "c") ; draw the square
 (command "circle" "2p" p1 p3) ; draw the outer circle
 (command "circle" "cen" p1 (/ len 2)) ; draw the inner circle
 (redraw)
) ; end of the defun ex4_1.

SOME MORE 'GET..' FUNCTIONS

Page 22 of 64

An Introduction to AutoLISP
Getting input from the user of your LISP programs can be done in many ways, and this gives you considerable
flexibility in deciding how your defined functions will work. Consider the following program to draw an 'L' shaped
beam cross-section, described in figure 4.2:

; LBEAM.LSP A program to draw an 'L' shaped beam cross-section
; with the leg length, flange thickness, rotation angle
; and corner radii are supplied by the user.
(defun dtr (a)
 (* pi (/ a 180.0))
)
(defun LBEAM ()
 (setq len (getreal "\nLeg length: ")
 flange (getreal "\nFlange thickness: ")
 ang (getangle "\nAngle of rotation: ")
 rad (getreal "\nCorner radius: ")
 p1 (getpoint "\nOrigin point: ")
) ; end of user input
 (setq len2 (- len flange)) ; calculation of inside length
 (setq p2 (polar p1 ang len)
 p3 (polar p2 (+ (dtr 90) ang) flange)
 p4 (polar p3 (+ (dtr 180) ang) len2)
 p5 (polar p4 (+ (dtr 90) ang) len2)
 p6 (polar p5 (+ (dtr 180) ang) flange)
) ;end of point definitions
 (command "line" p6 p1 p2 "")
 (command "pline" p2 "w" 0 0 p3 p4 p5 p6 "")
 (command "fillet" "r" rad "fillet" "polyline" "L")
 (redraw) ; end of drawing the outline and filleting
) ; end of defun

The (dtr) is an 'internally defined function', used in the polar definitions of points p2 through p6. Remember, only the
last defined function of a program is returned, so if you use internally defined functions, be sure to define them ahead of
the main function.

The 'GET' functions for this example are 'getreal', 'getangle', and 'getpoint'.

(getreal). The getreal function pauses for user input of a real number, and returns that number. In this case, the 'L'
shaped leg length 'len', the flange thickness 'flange', and the corner radius 'rad' are obtained with the getreal function,
which returns a real number, even if you enter an integer.

(getangle). This function returns the angle in radians, even though you enter the angle in the AutoCAD current units,
which may be degrees or grads etc. The angle returned depends upon the orientation defined by the ANGBASE system
variable in the current UCS. This system variable can be set with the UNITS command to be 0,90,180, or 270, and sets
the zero angle direction.

(getorient). A similar function, (getorient pt prompt) returns an angle that is not affected by the setting of ANGBASE.
Use (getangle) for relative angles, and (getorient) for absolute measure. (Review your AutoLISP Programmer's
Reference for the effect of the system variable ANGDIR, which controls clockwise/counterclockwise directions).

(getint). The getint function pauses for user input of an integer, which can be positive or negative in sign. The
following example uses (getint) for setting and restoring the drawing units precision system variable LUPREC.

 (setq dp (getint "\nNumber of decimal places for dimensioning: "))
 (setq oldluprec (getvar "LUPREC"))
 (setvar "LUPREC" dp)
 .
 . ; dimensioning commands
 .
 (setvar "LUPREC" oldluprec)

Page 23 of 64

An Introduction to AutoLISP

Home work questions

1.
Surface machining with a 'ball-nose' cutter requires that the cutting tool has a 'step-over' distance, which produces the
scalloped shape shown in figure 4.3. Write a program to calculate the 'cusp' height as shown, assuming the tool diameter
DIA and the step-over distance STEP are supplied as user input. Store the cusp height in a global variable CUSP so it
can be displayed using the !CUSP command at the command prompt after the program has executed.

2.
Rearrange your program to calculate the step-over distance STEP, given DIA and CUSP as user input.

3.
Write a program to draw and dimension the tool set-up of figure 4.3. Use the cutter diameter DIA and the cusp height
CUSP as user input to your program. Set the dimension precision to 3 decimal places for the step-over dimension
STEP, and 2 decimal places for the other dimensions.

In lesson five of this series, "User Interaction in AutoLISP", the 'GET..' functions are explored more fully, along with
some initial conditions for using them. You will also learn about printing functions and prompting for user input.
Example programs will illustrate the new functions, and homework assignments will test your knowledge of the text.

Page 24 of 64

An Introduction to AutoLISP
User Interaction in AutoLISP

Lesson Five in the CADalyst/University of Wisconsin Introduction to AutoLISP Programming course covers
GETing, prompting and printing.

by
Anthony Hotchkiss, Ph.D, P.Eng.

About this course.

Introduction to AutoLISP Programming is an eight-lesson independent study course, originally published in monthly
installments in CADalyst magazine. Readers may optionally register for the course in order to receive a copy of the
printed course outline, a study guide containing additional AutoLISP examples, reference materials, and solutions to the
practical assignments. On successfully completing an intermediate and a final mail-in project, students will receive
certificates of completion and 4.0 CEU's (continuing education units).

For further information, contact:

Steve Bialek
Engineering Professional Development
University of Wisconsin-Madison
432 North Lake Street
Madison, Wisconsin 53706
(608) 262-1735

LESSON FIVE - USER INTERACTION IN AUTOLISP
In this lesson, the 'GET..' functions are explored more fully, along with some initial conditions for using them.
You will also learn about printing functions and prompting for user input. Example programs will illustrate the
new functions, and homework assignments will test your knowledge of the text.

THE GET FUNCTIONS

In lessons two and three of this series, we introduced and used the (getpoint) function. Then last month in lesson four,
we looked at the functions (getreal), (getint), (getangle), (getorient), and (getvar). We will now explore the functions
(getcorner), (getdist), (getstring), (getkword), and (initget).

(getcorner) returns a point in the current UCS, and in this respect it is similar to (getpoint) except that (getcorner)
always requires a reference (base) point so that it can 'rubber-band' a rectangular box from the base point as you move
your cursor to the new point position. The following program RECTANG1.LSP shows its use:

 ;; RECTANG1.LSP A program to draw a rectangle
 ;; using the (getcorner) function
 ;;
 (defun rectang1 ()
 (setq pnt1 (getpoint "First corner ")) (terpri)
 (setq pnt3 (getcorner pnt1 "Opposite corner...")) (terpri)
 (setq pnt2 (list (car pnt1) (cadr pnt3)))
 (setq pnt4 (list (car pnt3) (cadr pnt1)))
 (command "line" pnt1 pnt2 pnt3 pnt4 "c")
 (redraw)
) ; end of the defun

The (getcorner) function has two arguments as shown, the required base point and the optional prompt. We have
introduced the (terpri) function, which prints a newline on the screen and is an alternative to the newline character '\n'.
Use of this function makes the preceding prompt easier to read.

(getdist) pauses for user input of a distance, and returns a real number. The function may have two optional arguments,
a point and a prompt. The distance may be supplied as two points, or, if the optional point is supplied as an argument, a
single point may be used as input.

Page 25 of 64

An Introduction to AutoLISP
In our earlier programs to draw boxes, we supplied the box length as an argument to the defined function. Instead of
this, you could use the (getdist) function as follows:

 (defun BOX ()
 (setq pt1 (getpoint "First point: ")) (terpri)
 (setq len (getdist pt1 "Drag the length of side")) (terpri)
 (setq pt2 (polar pt1 0.0 len))
 .
 . etc...

The (getdist) function forces the cursor to be connected to the point argument pt1 with a 'rubber band'. If no base point
is given as an argument, you can simply enter a real number in the usual AutoCAD way, remembering that AutoCAD
also accepts using two points connected by a rubber band for input of real numbers.

(getstring) lets you input a string, and returns up to 132 characters of that string. This can be used for file names, but if
the filename contains backslashes, they are converted to double backslashes so that the returned string can be used by
other functions which use filenames. We will cover file handling in lesson six next month.

Now, because AutoCAD input is normally terminated by a space as well as by the 'return' or 'enter' keys, we need some
way to handle character strings that contain separate words with spaces. This is allowed by using an optional argument
to handle spaces. For example

(setq name (getstring T "\nEnter your full name: "))

uses the variable T as a non-nil flag to indicate that spaces will be accepted as part of the input, and here, the variable
name will be assigned the entered name including any spaces. The variable T is part of the atomlist of AutoLISP, and is
often used to indicate a non-nil argument. For this reason it is not a good idea to redefine T, particularly if there is any
possibility of T taking a nil value!

Sometimes, the entered response should not contain any spaces, such as when filenames are required, so the optional
non-nil argument is omitted, as in:

(setq oldname (getstring "\nEnter the old .LSP file name: "))

In either case, the entered string is returned as a string contained within double quotes.

(getkword) pauses for user input of a predefined keyword, and is a little different from the other GET... functions,
because it requires the (initget) function to precede it. The (initget) function has a an optional string argument that
defines a list of the allowed keywords for the (getkword) function. For example, the following extract from a cross-
hatching program requires a yes/no answer:

 (initget 1 "Yes No")
 (setq ans (getkword "\nDo the layers NOPLOT and HATCH exist? (Yes/No):"))

Here, the allowable keywords are defined in the string argument of the (initget) function. The use of capitals specifies
the 'required' portion of the keyword to be entered, so in this example, you may respond to the prompt with Y or y or N
or n. You may also enter the entire keyword or any part of it that contains the required portion (shown capitalized). The
keywords are repeated in the (getkword) function to show the user the format expected. If the entered keyword is not
recognized, AutoCAD asks the user to try again.

The number 1 in the (initget) function is a 'control bit' argument, which means that a null input is not allowed. There are
many other control bits that may be used with other (get..) functions, but the number 1 is the only option for
(getkword). If this option is left out, a null input would be allowed, and you may use this to define a default condition,
in the same way that AutoCAD does for most of its subcommand options. For example, the above example could be
written:

Page 26 of 64

An Introduction to AutoLISP
 (initget "Yes No")
 (setq ans (getkword "\nDo the layers NOPLOT and HATCH exist? Yes/<No>:"))
 (if (null ans) (setq ans "No"))

Here, we allow a null response, because there is no control bit argument in the (initget) function, and we imply that 'No'
is the default keyword by using the standard AutoCAD display of <> brackets. In order to make the variable 'ans' take
this default value, we need some more sophisticated AutoLISP code in the form of the logical 'if' statement, which is
covered in lesson seven of this series. The 'if' statement shown tests for a null response, and sets 'ans' to 'No' if the test is
true.

Note that the use of the <> brackets is simply a convention and does not actually do anything to set default conditions -
you need to write code to make that happen, as in our example.

(initget) provides options only for the next (get...) function to follow, but not for any subsequent (get...) functions. The
syntax for the (initget) function is:

(initget control_bits string_argument)

as we saw in the example of the (getkword) function.

The optional control bit values are:

Bit Value Meaning

 1 Do not allow null (the ENTER key) input
 2 Do not allow zero input
 4 Do not allow negative values
 8 Do not check the drawing limits, even if LIMCHECK is on
 16 Not currently used - (earlier versions returned 3D points)
 32 Rubber band lines and boxes have dashed line type
 64 Return a 2D distance for the (getdist) function, instead of 3D

These control bits can be added together if you want to include more than one item. For instance, if you are using the
(getint) function and you do not want to allow null, zero, or negative values, you may provide 7 as the control bit. Some
programmers use (+ 1 2 4) as in (initget (+ 1 2 4)) instead of (initget 7) to make it clear that it is intended to include
three options.

The (initget) function is only active until the next time a (get...) function appears in a program, so you don't need to
reset the arguments of (initget) when it is not needed. (getstring) and (getvar) are not affected by the control bits of
(initget).

The number of control bits entered depends on the (get...) function which follows the (initget), and the following table
shows which control bits can be used with the (get...) functions:

 Function INITGET
 control bits

 GETINT 1, 2, 4
 GETREAL 1, 2, 4
 GETDIST 1, 2, 4, 32, 64
 GETANGLE 1, 2, 32
 GETORIENT 1, 2, 32
 GETPOINT 1, 8, 32
 GETCORNER 1, 8, 32
 GETKWORD 1
 GETSTRING
 GETVAR

Page 27 of 64

An Introduction to AutoLISP
Here is an example of the use of (initget) in our program for drawing a box:

 (defun BOX ()
 (initget 1) ; The 3D point cannot be null
 (setq pt1 (getpoint "First point: ")) (terpri)
 (initget 7) ; The length cannot be null, zero, or negative
 (setq len (getdist pt1 "Drag the length of side")) (terpri)
 (setq pt2 (polar pt1 0.0 len))
 .
 . etc...

PRINTING FUNCTIONS

The printing functions and their arguments are:

 (prompt string)
 (princ expression filename)
 (prin1 expression filename)
 (print expression filename)

We have already seen the (prompt) function in lesson two of this series. The function displays the string on the
command/prompt area of your AutoCAD screen, and it returns nil.

The (prompt) function must have a string as the argument, but the other printing functions can have any argument type.
The other printing functions can optionally have a filename (a file descriptor) as an argument so they can print to open
files or to the AutoCAD screen. We will leave this aspect until the next lesson which deals with files.

(princ), (prin1) and (print) return their expression data in different formats, as we show in the following.

Try setting your screens to text mode (with F1), then enter the following the command prompt:

 (prompt "\\Hello AutoLISP")
 (princ "\\Hello AutoLISP")
 (prin1 "\\Hello AutoLISP")
 (print "\\Hello AutoLISP")

Your screens will display:

 Command: (prompt "\\Hello AutoLISP")
 \Hello AutoLISPnil

 Command: (princ "\\Hello AutoLISP")
 \Hello AutoLISP"\\Hello AutoLISP"

 Command: (prin1 "\\Hello AutoLISP")
 "\\Hello AutoLISP""\\Hello AutoLISP"

 Command: (print "\\Hello AutoLISP")

 "\\Hello AutoLISP" "\\Hello AutoLISP"

 Command:

Page 28 of 64

An Introduction to AutoLISP
Let's see what has happened:

(prompt) interprets special characters, prints strings without double quotes, and returns nil.

(princ) interprets special characters, prints strings without double quotes, and returns the expression unevaluated.

(prin1) does not interpret special characters, prints strings with double quotes, and returns the expression.

(print) is similar to prin1, but inserts a blank line before, and a space after the printed expression.

Now try the following:

 (setq x 4.0)
 (print x)
 (prompt x)

and you will notice that (print) actually prints 4.0 and returns 4.0, whereas (prompt) gives an error message (error:
bad argument type) because the variable to be printed is not a string.

Note that (prompt (setq b "Goodbye")) is fine, because setq returns a string in this case.

A common usage of (prompt) is at the front of a program, before the first (defun), when you may want to verify that
your program is being loaded, thus:

 ;; IBEAM.LSP
 ;; A program to design and dimension I-beams
 ;;
 (prompt "Please wait: Loading IBEAM command")
 (defun C:IBEAM ()
 (initget 7)
 (setq height (getreal "\nHeight: "))

Remember that if a program consists of AutoLISP subrs (defined functions), these functions will execute one by one
when the program is loaded. Therefore the (prompt) function will execute immediately, but the (defun) function is not
executed until its final closing parenthesis is entered and interpreted, and this may take a while if the (defun) is lengthy.

Printing functions can be used to verify user input or to print the results of calculations. In our IBEAM example, for
instance, the entered height of the beam can be verified as follows:

 ;; IBEAM.LSP
 ;; A program to design and dimension I-beams
 ;;
 (prompt "Please wait: Loading IBEAM command")
 (defun C:IBEAM ()
 (initget 7)
 (setq ht (getreal "\nHeight: "))
 (princ "Beam height is ")
 (princ ht)
 (princ ", is this O.K? Yes/No") (terpri)
 (initget 1 "Yes No")
 (setq ans (getkword))

The (getkword) has no arguments because the prompting has already been given by the (princ) statements. The
example emphasizes that (princ) can use both string and real arguments, but we can reduce the number of (princ)

Page 29 of 64

An Introduction to AutoLISP
statements by 'concatenating' all three prompts together with the (strcat) function which, as its name implies, can
concatenate only character strings together. The real number for the height can be converted to a string with the (rtos)
(real-to-string) function, so the (princ) could look like:

(princ (strcat "Beam height is " (rtos ht) ", is this O.K.? Yes/No"))

The difference between the these approaches is that the first one prints the real number exactly as it was input by the
user. In the (rtos) case, the real number is returned as a string that looks like a number in the current 'units' settings,
which by default is decimal, with 4 decimal places. (rtos) has two optional arguments which control the units mode and
the precision respectively, thus (rtos ht 2 3) returns the ht variable in decimal units with 3 decimal places for the
precision. The (rtos) mode numbers are 1, scientific; 2, decimal; 3, engineering; 4, architectural; and 5, arbitrary
fractional units.

A similar conversion function to handle integers is the (itoa) (integer to alpha) function. I think it would be better to
name this function (itos) (integer to string) for consistency with the (rtos) function, so I am inclined to define the (itos)
function as follows:

(defun itos (a) (itoa a))

Even simpler is the more elegant:

(setq itos itoa)

which assigns the subr (itoa) to (itos). In either case the original function (subr) is unchanged.

If you use (setq itos itoa), then entering !itos and !itoa at the command prompt will both list the same thing: <Subr:
#2a664>, which is the original subr definition for itoa. Note that (itoa) does not have mode or precision arguments, as
they are irrelevant for integers.

Home work questions

1. Why did we suggest that you set your screens to 'text' mode before entering the prompt and printing functions?

2. Write a program to draw a square box with options to draw the outline of the box either as separate lines or as a
polyline. Let the user enter L or P (upper or lower case) in order to choose the line or polyline option. Also, force the
user to enter a non-nil, non-zero and non-negative length for the side of the square. Hint: the (command) function can
use string variables as its arguments, so you can assign a variable to be the appropriate command with the (getkword)
function.

3. Write a program that can insert any of six blocks, such as nut-and-bolt type fasteners, where the user selects the block
name by entering the minimum number of characters from a keyword list. Have the program display a slide of the six
items with labels for identification, so that the user can select the appropriate keyword. Redraw the screen to eliminate
the slide before the selected block is inserted. Also, make the user pre-select an insertion point (for instance with the
(getpoint) function) so that the 'insert' command works completely automatically with all of the subcommands
provided. For those not familiar with slides, the command to make a slide is MSLIDE, and to view the slide, use
VSLIDE with the slide filename as a subcommand.

In lesson six of this series, "Input/output and file handling with AutoLISP", you will learn more about printing functions
for files and how to make 'clean' endings to your programs. The lesson will also cover debugging techniques, error
handling and some hints on reducing the number of variables in your programs. Example programs will illustrate the
new functions, and homework assignments will test your knowledge of the text.

Page 30 of 64

An Introduction to AutoLISP
Input/Output and File Handling with AutoLISP

Lesson Six in the CADalyst/University of Wisconsin Introduction to AutoLISP Programming course covers
printing functions, testing and debugging techniques.

by
Anthony Hotchkiss, Ph.D, P.Eng.

About this course.

Introduction to AutoLISP Programming is an eight-lesson independent study course, originally published in monthly
installments in CADalyst magazine. Readers may optionally register for the course in order to receive a copy of the
printed course outline, a study guide containing additional AutoLISP examples, reference materials, and solutions to the
practical assignments. On successfully completing an intermediate and a final mail-in project, students will receive
certificates of completion and 4.0 CEU's (continuing education units).

For further information, contact:

Steve Bialek
Engineering Professional Development
University of Wisconsin-Madison
432 North Lake Street
Madison, Wisconsin 53706
(608) 262-1735

LESSON SIX - INPUT/OUTPUT AND FILE HANDLING WITH AUTOLISP
In this lesson you will learn more on printing, and how to use the print functions to get 'clean' endings to your
programs. You will learn how to deal with external files for reading and writing data, and some example
programs will illustrate techniques for file handling. You will also learn about error handling and testing and
debugging your programs. Other techniques for writing modular programs will be introduced. As usual,
homework assignments will test your knowledge of the text.

EXTERNAL FILES

AutoLISP has many functions that let you create and communicate with external files. You can use files to store data
created during your programs, or you can read data from an external file to be used in your programs. An example of
reading data is in parametric design, where the design parameters are stored in a text data file, which can be created
with your favorite ASCII text editor.

The simplest way to store the design data in a file is a line-by-line sequence of values. For example, suppose we want to
create an I-beam with the beam height, width, and web thickness, these values could be entered into a file as follows:

 4.5
 3.2
 0.625
where each number represents the height, width, and thickness respectively. Now, suppose you call this file
BEAMDATA.DAT, conforming to the naming conventions for DOS files, then the procedure to read the data into your
IBEAM.LSP program would be:

1. Open the file called BEAMDATA.DAT in 'read-only' mode.
2. Read each line of the file in turn, and assign its value to an appropriate variable name.
3. Close the file.
4. Calculate any other data, and get an origin point to position the I-beam in your drawing.
5. Define any other required points, then draw and dimension the beam.

When you work with files like this, it is necessary to open and close them, as we indicate here. The AutoLISP function
to open a file is

(open filename mode)

The filename and mode are strings, given in double quotes. The mode can be read "r", write "w", or append "a". Read
mode means read-only, so that any data in the file is protected from being over-written, and you will use this mode
when you want to extract data from the external file. Write mode allows you to write (or print) data to the file. If the file

Page 31 of 64

An Introduction to AutoLISP
already contains data, the data will be over-written, because anything you write to the file gets written at the start, or
beginning of the file.

If you want to add data to an existing file, then use the 'append' mode, which opens a file and positions itself at the end
of the file, so that any data that is written to the file is placed after the existing data, instead of on top of it as is the case
with 'write' mode. The mode string should be a single lower-case letter "r", "w", or "a".

The (open) function returns a file code number, which must be used for any subsequent communication (reading,
writing, or printing) to and from the file. Therefore, it is usual to use (setq) with (open) as in:

(setq datf (open filename mode))

where the variable 'datf' is used to store the file code number, or file 'descriptor'.

To close a file that has been opened, you must use the file descriptor in the (close) function, as follows:

(close filedescriptor)

which, in the example given above, would be (close datf).

READING DATA FROM EXTERNAL FILES

For the I-beam example, your program could start with the following extract from IBEAM5.LSP:

 ;IBEAM5.LSP A program to take parametric data from an
 ; external file to draw the I-beam. Uses (atof).
 ;
 (defun ibeam5 ()
 ; Get the user input from the file BEAMDATA.DAT
 (setq datf (open "beamdata.dat" "r"))
 (setq h (atof (read-line datf))
 width (atof (read-line datf))
 thickness (atof (read-line datf))
 inner_height (- h (* 2 thickness))
 inner_width (/ (- width thickness) 2)
)
 (close datf)
 (setq pt1 (getpoint "\nLower left corner point: "))
 .
 .
 .

Two new functions are introduced here, (read-line) and (atof). After the file has been opened in read-mode and the file
descriptor has been assigned to the variable 'datf', the (read-line) function reads the first line of the file. (read-line) has
one argument, the file descriptor, and it returns the 'next line' in the file as a string. This means that the file is
automatically advanced to the next line so the sequence of (read-line) functions reads successive lines of the data file.
If the actual data is a number, it is still returned as a string, which must be converted to a number, and there are some
options as to how to do this. In the example shown, we have used the (atof) function, which converts 'alpha-to-floating
point' (in other words 'string-to-real'). The usage of (atof) is simply (atof string), where string is the string to be
converted. In our example the string is returned from (read-line).

The IBEAM5.LSP program reads a total of three lines altogether, converting each one to a real (decimal) number. There
is also a function for converting strings to integers, the (atoi) function, which you can use in similar circumstances
when you need to read in an integer from your external data file.

In our example, the other variables inner_height and inner_width are calculated for convenience so that they can be
used later on in the point definitions for the outline of the I-beam cross-section.

There is a (read) function that has a string as its argument, and it returns the first item in the string converted to the
appropriate data type, so if the first item in the string is a real, integer, list or actual string of characters, (read) will
return it properly converted to its data type real, integer, etc. This is an alternative to the use of (atof) or (atoi), and the
above example would work just as well if we had programmed it as follows:

Page 32 of 64

An Introduction to AutoLISP

 ;IBEAM5.LSP A program to take parametric data from an
 ; external file to draw the I-beam. Uses (read).
 ;
 (defun ibeam5 ()
 ; Get the user input from the file BEAMDATA.DAT
 (setq datf (open "beamdata.dat" "r"))
 (setq h (read (read-line datf))
 width (read (read-line datf))
 thickness (read (read-line datf))
 inner_height (- h (* 2 thickness))
 inner_width (/ (- width thickness) 2)
)
 (close datf)
 (setq pt1 (getpoint "\nLower left corner point: "))
 .
 .
Note that if you use (read) like this instead of (atof), it returns whole numbers as integers, so you must be careful to
create your parametric data in the appropriate form, using decimal format for whole numbers as necessary, otherwise
you would need to specify the '2' in

 inner_height (- h (* 2 thickness))
 inner_width (/ (- width thickness) 2)
as 2.0:

 inner_height (- h (* 2.0 thickness))
 inner_width (/ (- width thickness) 2.0)
to guarantee that the variables are assigned as real numbers.

The BEAMDATA.DAT file can contain descriptive notes, such as:

 4.5 I-Beam height
 3.2 Width
 0.625 Web and Flange Thickness
(read) only takes the first item of the string, so the descriptive text in your data file will be ignored, and (atof) also
ignores the text part of the string if the numbers come first as we show here. You can test these concepts at your
AutoCAD command prompt, as in the following sequence:

Command: (setq f (open "beamdata.dat" "r"))
<File: #2c4c4>

Command: (setq h1 (read-line f))
"4.5\tI-Beam height "

Command: (atof h1)
4.5

Command: (read h1)
4.5

Command: (close f)
nil

Command:
The file descriptor format is <File: #nnn>, and both (atof) and (read) return the real number 4.5, and not the following
text. I used a tab key to create the BEAMDATA.DAT file, so the string that is returned from (read-line) shows the \t
special character for the tab key. Don't forget to close the file after you have finished to avoid possible problems with
exceeding the allowed number of open files specified in your config.sys file.

Page 33 of 64

An Introduction to AutoLISP
WRITING DATA TO EXTERNAL FILES

Other related functions for use with files are the print functions that we covered last month in lesson five of this series,
(princ), (prin1), and (print). In lesson five, we gave the syntax of these functions as

 (princ expression filename)
 (prin1 expression filename)
 (print expression filename)
The filename in each of these cases is actually the 'file descriptor' that we defined above, so the usage of (princ) would
be for example:

 (setq f (open "outdata.txt" "w"))
 (setq x (* PI 0.25))
 (princ x f)
 (close f)

The (write-line) function is the counterpart of (read-line), and it only writes strings to a file, but does not write the
double quotes associated with character strings. Note that strings can be string variables, so that

(write-line "Here is a string" f)

is equivalent to

(setq strx "Here is a string")
(write-line strx f)
(write-line) and the print functions allows you to save the results of your computational programs in separate files.

The filenames that are used for printing can be regarded as 'devices', such as your printer, so it is possible to write
information directly to your printer by assigning the printer port LPT1 (or possibly PRN) for parallel ports, or COM1
for serial ports, assuming your computer is configured in this way. For example, if you wanted to list the height and
cross-sectional area of a closed polyline (possibly a simple I-beam cross-section), the area command stores the area in
the system variable AREA, so you could write:

 (command "pline" p1 p2 p3 p4 p5 p6 p7 p8 p9
 p10 p11 p12 "c")
 (command "area" "e" "L")
 (setq csa (getvar "AREA"))
 (setq pf (open "lpt1" "w")) ; opens the LPT1 port
 (write-line "BEAM DATA" pf)
 (princ "Beam height = " pf) (princ h pf) (princ "\n" pf)
 (write-line (strcat "Cross-section area = " (rtos csa)) pf)
 (close pf)
 ...
Here, we used (write-line) for the first string, then (princ) was used three times to write a string, followed by a real
number variable, followed by a new-line. An alternative is to use (write-line) with (strcat) and (rtos) to convert
numbers to strings, to join strings together, and to place a new-line automatically.

USING THE PRINT FUNCTIONS TO GET CLEAN ENDINGS TO YOUR PROGRAMS

The print functions return absolutely nothing (not even 'nil'), and this can be used to take care of having 'nil' written
every time you run a program. Simply use (print) or (princ) with no arguments at the end of your programs (just before
the final close of the defun), as in this example of the rectangle program:

 ;; RECTANG1.LSP A program to draw a rectangle
 ;; using the (getcorner) function
 ;;
 (defun rectang1 ()
 (setq pnt1 (getpoint "First corner ")) (terpri)
 (setq pnt3 (getcorner pnt1 "Opposite corner...")) (terpri)
 (setq pnt2 (list (car pnt1) (cadr pnt3)))
 (setq pnt4 (list (car pnt3) (cadr pnt1)))

Page 34 of 64

 (command "line" pnt1 pnt2 pnt3 pnt4 "c")

An Introduction to AutoLISP
 (redraw)
 (princ) ; the way to get a clean ending to the program
) ; end of the defun
DEBUGGING TECHNIQUES
Most of the problems you will encounter in your early days of programming will be associated with mismatched
parentheses, wrong spelling of variable names, and trying to use the wrong type of argument in a function.
Unfortunately, the error messages that AutoLISP produces may not indicate a direct problem. For instance, if you open
some double quotes at the start of a string prompt, but you fail to close the double quotes, the next double quotes in
your program will be taken to be the missing 'closing' quotes. This can result in the message 'exceeded maximum string
length', which is a straight forward problem to resolve, but it may also result in a 'malformed string' error if the next
double quotes do not cause a very long string. Consider the following program, LSHAP.LSP, which draws an 'L' shaped
cross-section:

 (defun LSHAP ()
 (setq P0 (GETPOINT "\nEnter Start Point: "))
 (setq P1 (GETPOINT P0 "\nEnter Second Point: "))
 (setq ang1 (angle p0 p1))
 (setq d1 (distance p0 p1))
 (setq a90 (* pi 0.5))
 (setq ang2 (+ ang1 a90))
 (setq ang3 (+ ang2 a90))
 (setq th (* d1 0.25))
 (setq d2 (- d1 th))
 (setq p2 (polar p1 ang2 th))
 (setq p3 (polar p2 ang3 d2))
 (setq p4 (polar p3 ang2 d2))
 (setq p5 (polar p4 ang3 th))
 (command "line" p0 p1 p2 p3 p4 p5 "close")
 ;
 ;**************** adding fillet radii ***********
 ;

 (setq pf31 (polar p2 ang3 (* d2 0.6))
 pf32 (polar p3 ang2 (* d2 0.4))
 pf21 (polar p1 ang2 (* th 0.6))
 pf22 (polar p2 ang3 (* d2 0.4))
 pf41 (polar p3 ang2 (* d2 0.6))
 pf42 (polar p4 ang3 (* th 0.4))
); set fillet points
 (setq frad (* th 0.75))
 (command "fillet" "r" frad
 "fillet" pf21 pf22
 "fillet" pf31 pf32
 "fillet" pf41 pf42 "redraw")
)
In this example, if a set of double quotes is missing from the (GETPOINT) functions, the 'exceeded maximum string
length' results, but leaving off any of the double quotes at the command fillet section results in a 'malformed string'.

SPECIAL CASE ERRORS

The LSHAP.LSP program draws the shape satisfactorily if it is displayed as a large size on your screen, but fails for
very small displays, as shown in figure 6-1.

The command prompt area from figure 6-1 shows on the text screen as:

 Command: (lshap)

 Enter Start Point:
 Enter Second Point: line From point:
 To point:
 To point:
 To point:
 To point:

Page 35 of 64

An Introduction to AutoLISP
 To point:
 To point: close
 Command: fillet Polyline/Radius/<Select first object>: r Enter fillet
radius <0.
 6343>: 0.066200060300832
 Command: fillet Polyline/Radius/<Select first object>:
 Select second object:
 Lines are parallel
 Invalid
 error: Function cancelled
 (COMMAND "fillet" "r" FRAD "fillet" PF21 PF22 "fillet" PF31 PF32 "fillet"
PF41 P
 F42 "redraw")
 (LSHAP)

 Command:
The error here is the invalidity of filleting parallel lines. However, the program clearly places points at fillet pick-
positions that are obviously on separate lines (see the code that defines the new points for filleting in the LSHAP.LSP
program). The problem here is that even though points PF21 and PF22 are on separate lines, AutoCAD uses the
'pickbox' method of selecting the objects, and in this case, the drawing of the part is too small for the pickbox to
distinguish between the lines.

This shows that it is possible for programs to fail simply due to unusual cases in which they are applied. It is often the
case that your programs work perfectly well, until you let someone else use them, and software development relies very
much on third party testing to ensure that the software is as fool-proof as possible.

TEN DEBUGGING TECHNIQUES

1. Use semicolons to comment out sections of your code in order to track down errors.

2. Read the AutoLISP returned error messages in the text-screen (use the F1 key).

3. Write (prompt) or (princ) statements to check that the execution has progressed to certain key places. For example,
you might place the statement (prompt "I made it to here!...")

4. You can pause your programs by inserting the (getint) statement as in (getint "\nHit return to continue..."),
because instead of actually supplying an integer, you may also return the 'enter' key for a null input. The program will
pause until you enter, so you will know that the program executed properly until that point, and your debugging can
continue in the later statements.

5. Write modular programs to separate sections of defined functions (see the next section)

6. Use template, or 'prototype' programs for common sections of code.

7. Use meaningful variable names.

8. Write 'readable' code with sufficient annotation.

9. Test for limiting values to find 'special case' errors.

10. Use the (trace) and (untrace) functions to help in debugging. The (trace function1 ...) function is used for
debugging one or more functions that you supply as the arguments of (trace). After this statement, each time the
function(s) called by trace is/are evaluated, a display of the function appears, and the result of the function is printed.
(untrace) takes the (trace) off.

WRITING MODULAR PROGRAMS

You can split your programs up into modules that can be executed and debugged separately (or sometimes in sequence),
in order to make the debugging process more tractable. In the case of the LSHAP.LSP program, a modular approach
might look like:

 (defun inputdata ()
 (setq P0 (GETPOINT "\nEnter Start Point: ")
 P1 (GETPOINT P0 "\nEnter Second Point: ")
 ang1 (angle p0 p1)

Page 36 of 64

An Introduction to AutoLISP
 d1 (distance p0 p1)
 a90 (* pi 0.5)
 ang2 (+ ang1 a90)
 ang3 (+ ang2 a90)
 th (* d1 0.25)
 d2 (- d1 th)
 p2 (polar p1 ang2 th)
 p3 (polar p2 ang3 d2)
 p4 (polar p3 ang2 d2)
 p5 (polar p4 ang3 th)
) ; end of setq
) ; end of defun inputdata

 ;**************** adding fillet radii ***********
 (defun fillt (filrad)
 (setq pf31 (polar p2 ang3 (* d2 0.6))
 pf32 (polar p3 ang2 (* d2 0.4))
 pf21 (polar p1 ang2 (* th 0.6))
 pf22 (polar p2 ang3 (* d2 0.4))
 pf41 (polar p3 ang2 (* d2 0.6))
 pf42 (polar p4 ang3 (* th 0.4))
); set fillet points
 (command "fillet" "r" filrad
 "fillet" pf21 pf22
 "fillet" pf31 pf32
 "fillet" pf41 pf42 "redraw")
) ; end of defun fillt

 (defun draw1 ()
 (command "line" p0 p1 p2 p3 p4 p5 "close")
) ; end of defun draw1

 (defun drawfils ()
 ; set the fillet radii
 (setq frad (* th 0.75))
 (fillt frad)
) ; end of defun drawfils

 (defun LSHAP ()
 (inputdata)
 (draw1)
 (drawfils)
 (princ)
) ; end of defun lshap
Here, the program has been split into a number of defined functions. When all of the defined functions are written in
sequence in a program, the name of the last defined function of the sequence is returned on loading the program.

After each individual part has been run and debugged as a separate program, you can assemble the parts in the order
shown so that the defun LSHAP is last as shown, and its name is echoed at the command prompt when the program is
loaded. The defun LSHAP executes three other defined functions, (inputdata), (draw1), and (drawfils), then the
program ends with a (princ) to get a clean ending.

(inputdata) collects the two required input points, then calculates all of the other corner points of the L shape. This
function can be written and debugged completely separately from any of the other functions.

The next defined function (draw1) requires that the points p0 through p5 are defined, which means that (inputdata)
must correctly acquire and calculate these points before (draw1) can be executed. (draw1) then completes the simple
task of drawing the basic outline of the L shape.

Page 37 of 64

An Introduction to AutoLISP
(drawfils) executes the defined function (fillt), which must therefore be programmed and running properly before
(drawfils) can be run. (fillt) has an argument (the fillet radius), which is normally supplied by (drawfils). However,
(fillt) can still be executed independently, but following the execution of (inputdata) and (draw1), by supplying a fillet
radius such as 0.5 in the following:

 Command: (load "/acad11/lisp/fillt")
 (FILLT)
 Command: (fillt 0.5)
After you have run and debugged (inputdata), (draw1) and (fillt), you can run (drawfils). The way to run (drawfils)
independently is to first load and execute (inputdata) and (draw1), and then load, but do not execute (fillt). Then load
and execute (drawfils), which will automatically execute (fillt) as it is intended to do.

This type of load and execute lets you run each defined function as a separate program for the purpose of debugging.
After each of the individual programs is running properly, you can combine all of the functions into a single file, using
your text editor.

Alternatively, you may write all of the sections in turn in one long program, debugging each section as it is written in
turn. Remember that only the last defined function is returned at the command prompt, so if you want to execute the
preceding defined functions you must remember their names and execute them in sequence as required.

Home work assignments

This month's assignment includes reading parametric data from an external file, writing data to another external file,
and writing modular programs:

Write a program to draw two views of a base-plate as shown in figure 6-2. Your program should take the design
parameters, height, width, thickness, corner radius, diameter and location of all of the mounting holes shown from an
external file called BASEPLAT.DAT. Your program should calculate the area of the top view (Hint, draw the outside
outline as a polyline rectangle, then fillet the "Last" polyline object, then use the AREA command as we have shown in
this lesson). You can calculate the areas of the holes separately and subtract them from the plate area to arrive at the net
area. Next, calculate the volume of the plate by multiplying the net area by the plate thickness. Place center marks as
shown on all of the circles, but any other dimensioning is entirely optional.

Write the area and volume out to an external file called BASEPROP.DAT.

Write separate program modules (defined functions) to: 1) Take input data, including the plate center position as an
origin from the user, and the parametric data from the external file; 2) Draw the top view; 3) Draw the side view; 4)
Calculate the net area and volume; and 5) run the whole program.

You might also use colors for your programs. To do this use (command "color" 1), where 1 is red, 2 is yellow, 3 is
green etc.

ERRATA: Mr. Lee Moore of Facility Management, BIA in South Dakota spotted an error in Lesson Three, in the July
issue of CADalyst. Near the end of the article, I invited you to type in some statements aimed at using the (append)
function as follows:

(setq ptlst (append ptlst (list pt2)))

this returns ((2.72 1.39 0.0) (4.43 1.39 0.0)). Note that we now have a list of 2 items, each of which is itself a list of 3
items. Now try adding the third point without the 'list' function:

(setq pt3 (append ptlst pt3))

this returns ((2.72 1.39 0.0) (4.3 1.39 0.0) 4.43 2.85 0.0)

Lee correctly observed that the last (setq) should be (setq ptlst (append ptlst pt3)). Well spotted Lee! The intention
here was to update the point list variable ptlst, and not the point pt3. The danger here is that the statement as written
does in fact return the same result as the correct version, but of course, the intended variables will not contain the
correct information. I will be even more diligent in future, as this was most definitely not a 'deliberate' mistake.

Page 38 of 64

An Introduction to AutoLISP
In lesson seven of this series, "Logic and branching out with AutoLISP", you will learn some of the more sophisticated
programming capabilities of AutoLISP, including relational and logical functions. You will also learn how to impose
conditions with the branching functions (if) and (cond).

Page 39 of 64

An Introduction to AutoLISP

Logic and Branching out with AutoLISP
Lesson Seven in the CADalyst

University of Wisconsin Introduction to AutoLISP Programming course covers relational, logical, conditional
and branching functions.

by
Anthony Hotchkiss, Ph.D, P.Eng.

About this course.

Introduction to AutoLISP Programming is an eight-lesson independent study course, originally published in monthly
installments in CADalyst magazine. Readers may optionally register for the course in order to receive a copy of the
printed course outline, a study guide containing additional AutoLISP examples, reference materials, and solutions to the
practical assignments. On successfully completing an intermediate and a final mail-in project, students will receive
certificates of completion and 4.0 CEU's (continuing education units).

For further information, contact:

Steve Bialek
Engineering Professional Development
University of Wisconsin-Madison
432 North Lake Street
Madison, Wisconsin 53706
(608) 262-1735

LESSON SEVEN - LOGIC AND BRANCHING OUT WITH AUTOLISP

In this lesson you will learn some of the more sophisticated programming capabilities of AutoLISP, including relational
and logical functions. You will also learn how to impose conditions with the branching functions (if) and (cond), and
you will see many examples of the use of these intelligent decision-making functions in example programs and parts of
programs. The lesson ends with some suitable homework questions to test your knowledge of the text.

DECISION MAKING IN AUTOLISP

In lesson five, you saw that it is possible to make choices with suitable prompting from (getkword). This month you
will learn that your programs can make certain choices automatically, with intelligent decisions based on your own
design rules.

Let's start with the IBEAM that we have used quite a lot in this series of lessons. We can impose some rules on the
design of the I-beam, for instance by specifying that the thickness of the web should not exceed 25% of the width of the
cross-section. Figure 7-1 shows the I-beam with the dimensions of Height HT, flange thickness FT, web thickness WT,
width WI, and radius RAD.

To implement our first design rule, part of your program could read as follows:

 (defun ibeam ()
 .
 .
 (setq WI (getreal "\nBeam width: "))
 (setq WT (getreal "\nWeb thickness: "))
 (if (> WT (* WI 0.25)) ; test the design rule
 (setq WT (* WI 0.25)) ; impose the restriction
) ; end of if
 .
 .
) ; end of defun
Here, we allow the designer to choose the beam width, WI, and the web thickness, WT, independently, but we check to
see if the web thickness is greater than 0.25 x WI. If this is so, then we force WT to be equal to 0.25 x WI. To
accomplish this, we have used two new functions, if (if) and greater than (>). The (if ..) function works by using a test

Page 40 of 64

An Introduction to AutoLISP
expression, followed by an expression which is evaluated if the test expression is valid, in other words if it is not null. If
the test expression is null, the following expression is ignored, and an optional 'else' expression is evaluated. We will
return to the (if) function later in this lesson, where you will learn more of the 'else' expression.

RELATIONAL FUNCTIONS

The test expression uses a relational function, the greater than (>) function. Relational functions return T if the
relationship is true, and nil if it is not. In this case, the greater than test expression has the format (> atom1 atom2). If
atom1 is numerically greater than atom2, this returns T. Note that lists cannot be compared, only expressions that have
a single value (atoms), but these can include strings.

The atoms in our example are WT and (* WI 0.25) respectively, so as long as WT, the web thickness is not greater
than 0.25 x WI, the test will return nil. The next expression, (setq WT (* WI 0.25)) will then be ignored, and the (if)
statement will end as shown. The designer therefore may choose any value of WT less than or equal to WI/4, but the
program will prevent greater values from being used.

Relational functions have the format

(relation atom1 atom2 atom3)

where the relation applies to each successive atom in turn, so that in the case of greater than, the function returns T if
the atom1 is greater than atom2, which is in turn greater than atom3 and so on for all of the succeeding atoms. The
relational functions are valid for numbers and strings.

Other relational functions are:

(= atom1 atom2 ...) The equal to function returns T if the atoms are equal, and nil otherwise.
(/= atom1 atom2 ...) The 'not equal to' function returns T if the atoms are not equal, and nil otherwise.
(< atom1 atom2 ...) The 'less than' function returns T if the first atom is less than the second.
(<= atom1 atom2 ...) The 'less than or equal to' function returns T if the first atom is less than or equal to the second.
(>= atom1 atom2 ...) The 'greater than or equal to' function returns T if the first atom is greater than or equal to the
second.

Here are some other functions that may be used as tests with the (if) function:

(eq expression1 expression2) returns T if the expressions are identically equal. The expressions can be lists, but they
must be exactly the same list.
(equal expression1 expression2 tolerance) returns T if the expressions evaluate to the same thing. The expressions can
be lists. If the expressions evaluate to be numbers, the optional tolerance can be specified to determine how closely the
numbers should match. This is useful in cases where some numerical round-off errors may otherwise prevent an exactly
equal comparison.
(listp item) returns T if the item is a list, and nil otherwise.
(minusp number) returns T if the argument is a negative number.
(not item), (null item) both of these functions return T only if the item is nil.

Consider the case where you need to constrain both the minimum and maximum web thickness. Suppose the minimum
value of WT is to be one tenth of the beam width, and its maximum value is as before, one quarter of the beam width.
There are now two conditions to be satisfied, so following the previous example, we could simply write:

 (defun ibeam ()
 .
 .
 (setq WI (getreal "\nBeam width: "))
 (setq WT (getreal "\nWeb thickness: "))
 (if (> WT (* WI 0.25)) ; test the upper bound
 (setq WT (* WI 0.25)) ; impose the restriction
) ; end of if
 (if (< WT (* WI 0.1)) ; test the lower bound
 (setq WT (* WI 0.1)) ; impose the restriction
) ; end of if
 .
 .
) ; end of defun

Page 41 of 64

An Introduction to AutoLISP
This example is a perfectly valid way to test for each of the conditions for the minimum and maximum web thicknesses,
but here is a more appropriate function for testing multiple conditions, the (cond) function:

BRANCHING FUNCTIONS FOR DECISION MAKING

There are two branching functions:

 (cond (test1 then1) (test2 then2) )
 (if test then else)
CONDITIONAL EVALUATION WITH (COND)
The (cond) function evaluates each test expression in turn until a test expression returns a value other than nil. The
'then' expression which is associated with the non-nil test is then evaluated, and the rest of the pairs of expressions are
ignored. Note that there can be no 'else' expression in any of the argument lists. We could write the last example as:

 (defun ibeam ()
 .
 .
 (setq WI (getreal "\nBeam width: "))
 (setq WT (getreal "\nWeb thickness: "))
 (cond
 ((> WT (* WI 0.25)) (setq WT (* WI 0.25)))
 ((< WT (* WI 0.1)) (setq WT (* WI 0.1)))
) ; end of cond
 .
 .
) ; end of defun
Here we have included both the maximum and minimum tests for WT in a single conditional statement. Now, if the
web thickness exceeds its maximum value, the (cond) function ignores all following tests, and the program continues
after the 'end of cond' parenthesis.

Compare this with the two (if) statement approach, in which both cases must be tested even if the first one is satisfied.
The (cond) approach is more efficient than having several sequential (if) functions, especially if you place the most
likely conditions first, because as soon as a non-nil test is encountered, (cond) does not evaluate any further tests. Note
the double open parentheses which are used to group the 'test' and 'then' expressions into pairs.

Now consider the case where the designer has chosen a valid web thickness within the design constraints. In both the
double (if) program and the (cond) program, the tests would both fail (return nil), and the 'then' expressions would both
be ignored, and the program continues normally. However, in the case of the (cond) function, there is an opportunity to
note the fact that none of the conditions were met, by placing a dummy condition that will always be 'true' (non-nil) at
the end of all of the test-then pairs of conditions.

This type of 'default' case is important when the 'then' result is the only way that a variable obtains its value. In the case
of the web thickness, the value of WT already exists before the (cond) function is entered, so that value serves as the
default. However, it is possible that a default value does not exist. Let's suppose that we want to use a 'standard' corner
radius RAD whose value depends upon ranges of beam heights according to the following table:

 Beam height HT Corner radius RAD
 ______________ _________________
 under 2" 0.125"
 2" to 4" 0.25"
 over 4" to 6" 0.5"
 over 6" 0.625"

The (cond) function could be programmed as follows to meet these design criteria:

 (defun ibeam ()
 .
 .
 (setq HT (getreal "\nBeam height: "))
 (cond
 ((< HT 2.0) (setq RAD 0.125))
 ((and (>= HT 2.0) (<= HT 4.0)) (setq RAD 0.25))

Page 42 of 64

An Introduction to AutoLISP
 ((and (> HT 4.0) (<= HT 6.0)) (setq RAD 0.5))
 (T (setq RAD 0.625))
) ; end of cond
 .
 .
) ; end of defun
We have introduced two new functions, (and) and (T).

In fact T is not a function, but is an atom in the standard atomlist, whose value is T, and therefore not nil. Remember
that we used this atom in the (getstring) function in lesson five of this series to indicate a non-nil flag. Well, here it is
again, serving as an expression which is again non-nil, thus guaranteeing that if all else fails, (cond) will always find
this condition, and will evaluate the corresponding 'then' expression that follows. Here we are setting the radius equal to
0.625 if all other tests fail.

The (and) function returns T only if all of its succeeding expressions return non-nil. The format is:

(and expression1 expression2)

where any number of expressions can be used as successive tests. The tests in this case cover a range of values, so we
are really testing that RAD lies within a certain range of values. The first (and) in our example is

(and (>= HT 2.0) (<= HT 4.0))

which uses two expressions. The first expression is the relational function greater than or equal to, and it returns T if HT
is greater than or equal to 2.0. Similarly, the second expression returns T if HT is less than or equal to 4.0. If either one
of the expressions does not return T, in other words if either of the expressions returns nil, the entire (and) function will
return nil, and that means HT is outside the range of 2.0 and 4.0.

In the example, the (and) functions are the 'tests' of the (cond) function, so the parentheses group them together with
their corresponding 'then' expressions.

Another related function for decision making is (or expression1 expression2 ...). This function returns T if any one of
its expressions returns T. The list of expressions is examined in turn, and as soon as a T is returned, the evaluation is
stopped, and the (or) function returns T. This function is the opposite of (and), because in order to return nil, all of the
expressions of (or) must return nil.

CONDITIONAL EVALUATION WITH (IF)

We have seen examples of (if) functions that used the 'test' and 'then' expressions, but so far we have not used the 'else'
expression which is evaluated if the (if) test expression is nil. The full syntax of (if) is

(if test then else)

This function evaluates the 'test' expression, and if this is not nil, it evaluates the 'then' expression, in which case the
'else' expression is ignored. If the 'test' expression returns nil, the 'then' expression is ignored, and the 'else' expression is
evaluated. The 'else' expression is optional, in which case the 'then' expression is evaluated only if the 'test' expression
returns a non-nil value.

For example, in a cross-hatching program that we will publish in full in our last lesson next month, the hatch boundary
is supposed to be created on a layer called NOPLOT, and the hatch pattern is to be created on the layer HATCH. If
these layers don't exist, we give the user the chance to have the layers created automatically, or else the program can be
terminated with a 'quit' option. We might therefore have:

 (setq ans2 (getstring
 "\n Shall I create 'noplot' & 'hatch' or quit?
 enter Y (Create layers) or Q (Quit): ")) (terpri)
 (if
 (or (= ans2 "Y") (= ans2 "y")) ; the test expression
 (command "LAYER" "N" "hatch,noplot" ; the 'then'
 "C" "6" "hatch" "C" "2" "noplot" "") ; expression
 (quit) ; the 'else' expression
); end of if "create layers or quit"
Here we use (or) to accept answers in upper or lower case, and if the answer to the (getstring) prompt is either Y or y,
the layers are created and assigned colors, or else the function (quit) is used to terminate the program. Two functions,

Page 43 of 64

An Introduction to AutoLISP
(quit) and (exit) don't appear to be documented in the AutoLISP Programmer's Reference, but they are in the atomlist.
Either of these functions will abort the current lisp program.

As an alternative to (or), you can use the function (strcase string), which returns the string argument in upper case as
in:

 (if
 (= (strcase ans2) "Y") t expression ; the tes
 (command "LAYER" "N" "hatch,noplot" ; the 'then'
 "C" "6" "hatch" "C" "2" "noplot" "") ; expression
 (quit) ; the 'else' expression
); end of if "create layers or quit"
Even better is to guarantee an upper case "Y" or "Q" by using (initget) with (getkword) as in:

 (initget 1 "Y Q")
 (setq ans2 (getkword
 "\n Shall I create 'noplot' & 'hatch' or quit?
 enter Y (Create layers) or Q (Quit): ")) (terpri)
 (if
 (= ans2 "Y") ; the test expression
 (command "LAYER" "N" "hatch,noplot" ; the 'then'
 "C" "6" "hatch" "C" "2" "noplot" "") ; expression
 (quit) ; the 'else' expression
); end of if "create layers or quit"
We have covered the (if) function for a single 'then' expression and a single 'else' expression. What happens if you want
to do several actions if a test expression is not nil It appears from the above that if there were two 'then' statements, the
second of them would be assumed to be the 'else' expression. The (progn) function gives us a way to handle such
situations:

(progn expression1 expression2 ...)

(progn) evaluates each of its expressions in turn, but is itself a 'single' expression. You can use (progn) as the 'then'
and/or the 'else' expressions of the (if) function, and in any other circumstances when a single expression is expected.

The following example is another part of the cross-hatching program that we will list in full next month. The extract
shows that you can use logical branching to set default values in AutoCAD prompts, and that you can 'nest' (if)
statements inside each other for more complex options and decision-making.

This part of the hatch program asks the user if a HATCH pattern has already been selected, and the input of a Yes or
Select is enforced. The first (if) tests that the response is "Select", and if this is the case, a series of expressions that
follow in the (progn) function are evaluated. These expressions initialize the name of the hatch pattern m:hp to nil, then
the command HATCH is given with the ? option to list the names of the hatch patterns on the screen, then (getstring) is
used to obtain the name of the hatch pattern.

 (initget 1 "Yes Select")
 (setq YS (getkword "\n\n Have you pre-selected a hatch pattern?
 enter Y to continue or S to select from a list: "))
 (if (= YS "Select")
 (progn progn for selecting the hatch pattern ;
 (setq m:hp nil)
 (command "HATCH" "?" "")
 (setq m:hp (getstring "\n\nEnter hatch pattern name <ANSI31>:
"))
 (if (= m:hp "")
 (setq m:hp "ANSI31") ;hatch pattern default
) ;end of if m:hp is equal to ""
) ;end of progn for auto-hatch pattern
) ;end of if for hatch pattern selection
The 'default' name ANSI31 is given here, so that if the user simply enters a 'return', the following (if) tests that m:hp is
equal to "", and if this is so, the name m:hp is set to "ANSI31". Neither of the (if) statements in this example uses the
'else' option, as it is not needed in either case.

Page 44 of 64

An Introduction to AutoLISP
The hatch pattern variable m:hp used by AutoCAD. The AutoCAD release 11 menu ACAD.MNU makes reference to
this variable in the HATCH menus. Therefore, when this variable is set, it becomes the default for future hatching just
as though it had been pre-selected in AutoCAD. Note that the test for a 'return' response for (getstring) is (= m:hp ""),
and not (= m:hp nil) or (null m:hp), because (getstring) takes input in the form of a string, and the double quotes must
be used. This is different from the (getkword), which returns nil if you enter a return only.

Note also that AutoCAD internal variable names usually have the colon (:) as the second character in order to be
somewhat distinct from variable names that you are likely to use. Be warned that use of the colon in the names of
variables may change the values of AutoCAD variables, and you should be careful when you assign values to the
internal variables such as m:hp.

Home work assignment.

1. Write a program for the I-Beam of figure 7-1. Let the user input all of the values shown in the figure, but
automatically enforce all of the following design rules.

(i) The beam width WI should never exceed 0.8xHT, and should never be less than 0.5xHT.
(ii) The flange thickness FT must be in the range 0.05xHT to 0.15xHT
(iii) The web thickness WT must be in the range 0.1xWI to 0.2xWI
(iv) The corner radius RAD should have either of two standard values of 0.125" and 0.5", corresponding to beam
heights HT less than or equal to 4", and HT greater than 4" respectively, except where the flange thickness is less than
0.15". If FT is less than 0.15", RAD should be 0.8x FT.
(v) The beam height takes precedence over all other values, and should be used as it is provided.

In lesson eight, the last of this present series, "Intelligent Programming with AutoLISP", you will learn more of the
sophisticated programming capabilities of AutoLISP, including the looping functions which can be used to perform
repetitive operations. An example of an intelligent cross-hatching program will illustrate the concepts of looping. You
will also learn how to program your menus for an efficient AutoLISP development environment.

Page 45 of 64

An Introduction to AutoLISP

Intelligent Programming with AutoLISP
Lesson Eight in the CADalyst/University of Wisconsin Introduction to AutoLISP Programming course covers

looping functions and some useful menus for AutoLISP development.

by
Anthony Hotchkiss, Ph.D, P.Eng.

About this course.

Introduction to AutoLISP Programming is an eight-lesson independent study course, originally published in monthly
installments in CADalyst magazine. Readers may optionally register for the course in order to receive a copy of the
printed course outline, a study guide containing additional AutoLISP examples, reference materials, and solutions to the
practical assignments. On successfully completing an intermediate and a final mail-in project, students will receive
certificates of completion and 4.0 CEU's (continuing education units).

For further information, contact:

Steve Bialek
Engineering Professional Development
University of Wisconsin-Madison
432 North Lake Street
Madison, Wisconsin 53706
(608) 262-1735

LESSON EIGHT - INTELLIGENT PROGRAMMING WITH AUTOLISP
In this, the final lesson of this introductory course, you will learn about the looping functions of AutoLISP,
with an example of a cross-hatching program which uses many of the functions that have appeared throughout
the course. You will also see how to make your own menus for an AutoLISP development environment. The
lesson ends with some suitable homework questions to test your knowledge of the text.

LOOPING FUNCTIONS

Looping means that you want to continue to execute a set of activities for as long as, or until, some criterion is met. One
possible criterion is to continue executing the set of activities until you cancel with a control-C. This approach is not
normally highly recommended, but we mention it because the most frequent problem that new programmers get when
they first write programs with looping functions is that the program gets 'stuck' in an infinite loop, and the only way out
is to cancel.

We will cover three looping functions here:

(repeat integer expression1 expression2)

(foreach item list expression1 expression2 ...)

(while test expression1 expression2 ...)

All of the looping functions can have any number of expressions which are evaluated each time the loop is run. The
simplest looping function is (repeat), which repeats execution by evaluating each expression in turn a set number of
times, determined by the 'integer' argument.

The following program CONCIRCS.LSP is an example of a program that will draw any number of concentric circles,
each one increasing in diameter by an amount 'delta', supplied by the user. The program also takes input from the user
for the number of concentric circles, the center point of the set of circles, and the initial diameter.

 (defun concircs ()
 (setq num (getint "\nNumber of circles: "))
 (setq p (getpoint "\nCircle center point: "))
 (setq dia (getreal "\nInitial diameter: "))
 (setq delta (getreal "\nDiameter increment: "))

Page 46 of 64

An Introduction to AutoLISP
 (repeat num
 (command "CIRCLE" p "D" dia)
 (setq dia (+ dia delta))
) ; end of repeat
) ; end of defun
The repeat loop in this example has the user supplied 'num' as its integer, for the number of circles to be drawn. The
expressions evaluated in the repeat loop are the (command "CIRCLE"...) and the reassignment of the diameter of the
circle.

The next looping function, (foreach), is commonly used in connection with lists of points. In lesson three of this series,
you saw that it is possible to append lists of point coordinates to a 'point' list. Now, each item of that point list can be
operated upon in sequence, as in (foreach pt ptlst (command pt)) which assigns the name 'pt' to each item of the list
'ptlst' in turn, and then evaluates the expression (command pt) for each item in the list. The (command) function is
used here simply to 'dump out' the item pt, just as though it was entered from the keyboard. Note that (command) does
exactly the same thing with AutoCAD commands and sub-commands - it dumps them out as though they were keyed-
in. This is a useful way to put point values into line and/or pline commands as in:

(command "pline" (foreach pt ptlst (command pt)))

GRAPH2.LSP is a program which use (foreach) to plot a graph after reading the y-ordinate values from an external
file.

 ;; GRAPH2.LSP A program to plot a graph on the graphic screen, taking
 ;; any number of y-ordinate values from an external file (.txt)
 (defun graph2 ()
 ; Initialization and read data from the file
 (setq ptlst nil px (- 1))
 (setq fname (getstring "\nEnter the txt data file name: "))
 (setq fname (strcat fname ".txt"))
 (setq datafile (open fname "r")) ; opens file in read mode

 (if datafile
 (progn
 (setq numpoints (read (read-line datafile)))
 (repeat numpoints
 (setq px (1+ px))
 (setq py (read (read-line datafile)))
 (setq pp (list px py))
 (setq ptlst (append ptlst (list pp)))
) ; end of the repeat loop
 (command "pline" (foreach pt ptlst (command pt)))
 (close datafile)
) ; end of progn
 (princ (strcat "Cannot open file " fname))
) ; end of 'if'
 (redraw) (princ)
) ; end of defun
GRAPH2.LSP assumes that the y-ordinates are stored in a file with the file extension .TXT, and this is concatenated to
the filename that is input by the user. Notice how the 'if' statement uses the resulting file name as the test. This ensures
that the file descriptor actually exists, otherwise the message "Cannot open file...." is displayed. If the file is
successfully opened, the first line of the file is read in and is taken as the number of y-values to follow. The file contains
the number of y-values, followed by each y-value in turn on a separate line as in this data file:

 12
 0.0
 1.567
 1.874
 4.682
 3.675
 ...etc
In this case, the variable numpoints would be set to 12, and the repeat loop will thus execute or 'loop' 12 times. The
repeat loop sets the x-ordinate px by adding an increment of 1 to its previous value. The y-ordinate is then read from the
external file and a point is defined by 'listing' the x and y values together before appending the points to a pointlist
'ptlst'.

Page 47 of 64

An Introduction to AutoLISP
The pline command uses the foreach loop to dump out the points from the point list, the external file is closed and the
'if' statement is completed. Finally, the graph is redrawn to clean up the picture. This program may be extended to
include the x and y axes with suitable lines and text.

The third looping function (while) continues to evaluate expressions while, or for as long as, some test condition is true.
In our I-BEAM example of lesson 7, you used branching statements to force the web thickness of the beam to be no
greater than the width of the beam. However, it is possible that the user simply entered the wrong number, in which
case it would be nice to have the opportunity to correct it while still imposing the design rules.

Consider the case where you need to constrain the maximum web thickness WT to be one quarter of the beam width
WI. The conditional statement of the example of lesson 7 can be replaced by a loop as shown in this partial program for
the IBEAM.

 (defun ibeam ()
 .
 .
 (setq WI (getreal "\nBeam width: "))
 (setq WT (getreal "\nWeb thickness: "))
 (while (> WT (* WI 0.25)) ; test the upper bound
 (princ "\nEnter a value no greater than ")
 (princ (* WI 0.25)) (princ ": ")
 (setq WT (getreal))
) ; end of while
 .
 .
) ; end of defun

Here, instead of simply setting the value of the web thickness WT to a quarter of the beam width, the user is forced by
the while loop to enter an appropriate value to meet the design rule.

The following program, HATCH2.LSP, has some other examples of the use of branching and looping functions.
HATCH2.LSP is a way to cross-hatch an area without the need to break the hatch boundary. The program creates a
polyline which is used as the hatch boundary. The user indicates intersection points by tracing each point in turn around
some existing geometry, and the program automatically stops collecting boundary points when any point is coincident
with the first point selected.

This program was first written in 1987, and was last revised in March 1991, so it is getting quite elderly, but it still
serves as a useful training tool to show the looping and branching functions.

 ; HATCH2.LSP VER 4, MARCH 1991
 ;
 ; A Hatch program by Tony Hotchkiss
 ;
 ;
 ; HATCH2 is designed to allow cross hatching when the hatch boundaries
 ; are not necessarily contiguous. This feature eliminates the need
 ; for breaking lines before hatching.
 ;
 ; The following intelligent features are included in version 4:
 ;
 ; 1) The program uses layers 'hatch' and 'noplot'. The user is
 ; asked whether or not these layers exist. If the layers do
 ; not exist, the user has the options (a) that the layers will
 ; be created automatically, or (b) the user can quit the
 ; program.
 ;
 ; 2) The hatch scale may be chosen by the user, or if required, it
 ; is set automatically for any size of drawing.
 ;
 ; 3) The hatch pattern may be pre-selected, or selected from a list
 ; by the user, or a default (ANSI31) may be used.
 ;
 ; 4) Object snap (OSNAP) is set automatically to INTersection

Page 48 of 64
 ; for the duration of the program, because most points on a

An Introduction to AutoLISP
 ; hatch boundary occur at intersections. If a curved boundary
 ; is required to be hatched, then points along the boundary can
 ; be selected provided that the aperture does not include an
 ; intersection.
 ;
 ; 5) OSNAP is reset to its original setting at the end of the program.
 ;
 ; 6) After execution, the original current layer is restored as the
 ; current layer.
 ;
 ; 7) Any entities (objects) which are created for construction purposes
 ; are deleted automatically at the end of execution. In this way
 ; there is no accumulation of unwanted entities even if HATCH2 is run
 ; many times.
 ;
 ;**
After this lengthy set of comments, the program gets under way with some initialization and layer setting:

 (defun C:HATCH2 (/ osnp ocmd ans ans2 curlayer porig pdiff)
 ; Initialization
 (setq ocmd (getvar "CMDECHO"))
 (setvar "CMDECHO" 0)
 (setq osnp (getvar "OSMODE"))
 (setvar "OSMODE" 32)
 (setq curlayer (getvar "CLAYER"))
 ;
 ; Check with user to see if the layers 'hatch' and 'noplot' exist.
 ; If not, then offer the option to create or quit.
 ;
 (initget "Y N")
 (setq ans (getkword "\nDo the layers noplot & hatch exist?
 enter Y or N: ")) (terpri)
 (if (= ans "N")
 (progn ;progn for no layers exist
 (initget "Y Q")
 (setq ans2 (getkword "\nCreate 'noplot' & 'hatch' or quit?
 enter Y (Create layers) or Q (Quit): ")) (terpri)
 (if (= ans2 "Y")
 (command "LAYER" "N" "hatch,noplot"
 "C" "6" "hatch" "C" "2" "noplot" "")
 (quit)
) ; end of if "create layers or quit"
) ; end of progn 'no layers'
) ; end of if no layers exist
The program now continues by collecting the polyline points for the hatch boundary:

 ; Start collecting data and set layer to 'noplot'
 ;
 (command "LAYER" "T" "noplot" "S" "noplot" "")
 (setq pdiff 1)
 (setq porig (getpoint "\n origin"))
 (setq ptlst nil)
 ;
 ; Make a list of points for the 'pline'
 ;
 (while
 (> pdiff 0)
 (setq p (getpoint "\n next point"))
 (setq ptlst (append ptlst (list p)))
 (setq pdiff (distance p porig))
) ;end of 'while' loop
 ; Draw a pline as a boundary for hatching
 ;
 (command "PLINE" porig "W" 0 0 (foreach p ptlst

Page 49 of 64

An Introduction to AutoLISP
 (command p)))
The next step is to set the hatch scaling and select the hatch pattern. The program then does the hatching and ends by
resetting the system variables.

 ; Start of layer setting and hatching.
 ; Hatch scale is optionally entered or
 ; automatically calculated to limits/20
 ; before the hatch command is executed.
 ; **
 (initget "Y N")
 (setq ans (getkword "\n\n Do you want automatic scaling?
 enter Y or N: ")) (terpri)
 (if (= ans "N")
 (progn ;progn for no auto scaling
 (setq skale (getreal "\nEnter the hatch scale ")) (terpri)
) ;end of progn 'no auto-scaling'
 (progn ing ;progn for else - auto-scal
 (setq distskale (distance (getvar "LIMMIN")
 (getvar
"LIMMAX")))
 (setq skale (/ distskale 20))
) ;end of progn for auto-scaling
) ;end of if for scaling
 ; **
 (initget "Y S")
 (setq ans (getkword "\n Have you pre-selected a hatch pattern?
 enter Y to continue or S to select from a list: ")) (terpri)
 (if (= ans "S")
 (progn ;progn for selecting the hatch pattern
 (setq m:hp nil)
 (command "HATCH" "?" "")
 (setq m:hp (getstring
 "\nEnter hatch pattern name <ANSI31>:
"))
 (terpri)
 (if (= m:hp "")
 (setq m:hp "ANSI31") ;hatch pattern default
) ;end of if m:hp is not a string
) ;end of progn for auto-hatch pattern
) ;end of if for hatch pattern selection
 ; **
 (command "LAYER" "T" "hatch" "S" "hatch" "")
 (command "HATCH" m:hp skale "" "L" "")
 ; Erase pline and reset layers
 (command "LAYER" "S" "noplot" "F" "hatch" "")
 (command "ERASE" "L" "")
 (command "LAYER" "T" "hatch" "S" curlayer "" "REDRAW")
 (setvar "OSMODE" osnp)
 (setvar "CMDECHO" ocmd)
 (princ)
) ; end of the program
Note that you may need to adjust the number of spaces in some of the string prompts if you use this program directly,
because there is a chance that the maximum string length may be exceeded due to the indentation used when the string
prompts are split for ease of reading. Figures 8-1 through 8-7 show a typical execution of this hatch routine.

AUTOLISP DEVELOPMENT MENUS

In lesson one of this series, I showed you some menu commands that would simplify the creation and testing of your
AutoLISP programs. Here we will add to the menus so that you can create & edit programs, test them, print the current
program, list your LISP directory to both the screen and to the printer, change the name of the current 'test.lsp' program
for permanent storage, and finally load any AutoLISP program from your LISP directory.

Page 50 of 64

An Introduction to AutoLISP
I put these commands into an auxiliary menu file called AUX1.MNU, which I store with my other menus in a MNUS
directory under the executable AutoCAD directory, which I call ACAD11 at the time of writing. (This will change to
ACAD12 by the time this lesson appears in print!)

I am usually reluctant to make major changes to the standard ACAD.MNU file, so after copying that file to
ACD11.MNU, I simply added the single menu macro command as follows:

[AUX1.MNU]^C^Cmenu /acad11/mnus/aux1;

This line appears in the POP menu Files which contains the Save, End and Quit choices in Release 11. Then, in my
AUX1.MNU file I added a POP2 Menu as follows:

 .
 .
 ***POP2
 [Set-ups]
 [Initialize Layers]^C^C^P(progn (setvar "cmdecho" 0)+
 (command "linetype" "s" "hidden" "s" "phantom" "s"+
 "center" "s" "bylayer" "") (command "layer" "n"+
 "1,DIM,CENTER,HIDDEN,NOPLOT,TEXT,TBLOCK,HATCH" "")(princ));+
 (command "layer" "c" "1" "1,TEXT,TBLOCK" "c" "3" "DIM"+
 "c" "4" "CENTER" "c" "6" "HATCH,HIDDEN"+
 "c" "2" "NOPLOT" "")(princ);(command "layer" "l" "hidden" "hidden"+
 "l" "center" "center" "s" "1" "")(setvar "cmdecho" 1)(princ);^P
 [Lisp program development]^C^C^C$p2=p22 $p2=*
 [ADS and C development]^C^C^C$p2=p24 $p2=*
 [Set decimal places]^C^C^C$p2=p23 $p2=*

 **p22
 [Set-ups]
 [Edit-LSP]^C^C^Cshell ed C:/acad11/lisp/test.lsp;graphscr
 [Test-LSP]^C^C^C(load "/acad11/lisp/test");(test);
 [Print test.lsp]^C^C^Cscript /acad11/scripts/cpy2prn
 [List lisp directory to screen]^C^Cscript /acad11/scripts/lst2scr
 [List lisp directory to printer]^C^C^Cscript /acad11/scripts/lstlsp
 [Change .lsp filename]^C^C^P(load "/acad11/lisp/savtest");(savtest);^P
 [Load a lisp program]^C^C^P(defun lode ()+
 (setq fnam (getstring "Filename: "))+
 (load (setq fullname (strcat "/acad11/lisp/" fnam ".lsp"))))+
 (lode);^P
 [~--]
 [previous]^c^c$p2= $p2=*
 etc.
The POP2 page **p22 contains the commands, scripts, and LISP routines that make my life easier:

[Edit-LSP]^C^C^Cshell ed C:/acad11/lisp/test.lsp;graphscr

[Edit-LSP] is a simple macro to shell out and edit the current 'test.lsp' file, which I keep along with my other AutoLISP
programs in the lisp subdirectory. You can substitute your favorite editor in place of my 'ed'.

[Test-LSP]^C^C^C(load "/acad11/lisp/test");(test);

After editing, this macro tests the current program by loading and executing 'test.lsp'.

[Print test.lsp]^C^C^Cscript /acad11/scripts/cpy2prn

To get a hard copy of the program during debugging, this macro uses a script file to print the 'test.lsp' file. The script file
CPY2PRN.SCR is simply:

 shell
 copy \acad11\lisp\test.lsp prn
 graphscr

[List lisp directory to screen]^C^Cscript /acad11/scripts/lst2scr

Page 51 of 64

An Introduction to AutoLISP
Here, the script file LST2SCR.SCR lists the LISP directory to the AutoCAD text screen:

 shell
 dir \acad11\lisp*.lsp | sort | more

[List lisp directory to printer]^C^C^Cscript /acad11/scripts/lstlsp
LSTLSP.SCR lists my LISP directory to the printer as follows:

 shell
 dir \acad11\lisp*.lsp > prn

[Change .lsp filename]^C^C^P(load "/acad11/lisp/savtest");(savtest);^P

I save my working LISP program files by executing this SAVTEST.LSP program:

 ;;; SAVTEST.LSP A program to save "test.lsp" under a new name
 ;;; Program by Tony Hotchkiss, adapted from the Autodesk FCOPY.LSP
 (defun savtest (/ oldname old newname new)
 (setq oldname nil newname nil)
 (setq oldname (getstring "\nEnter the old .lsp file name <Test>: "))
 (if (= oldname "") (setq oldname "test"))
 (setq oldname (strcat "/acad11/lisp/" oldname ".lsp"))
 (setq newname (getstring "\nEnter the new file name (1-8 chars): "))
 (setq newname (strcat "/acad11/lisp/" newname ".lsp"))
 (cond ((null (setq old (open oldname "r"))) ;test open oldname "read"
 (princ (strcat "I can't open " oldname " for reading"));result if null
)
 (if old ; test old exists
 (progn
 (setq new (open newname "w"))
 (while (setq lin (read-line old))
 (write-line lin new)
) ad-write while file lines exist ;end of re
 (close old)
 (close new)
); progn
); if old exists
); conditional function
 (princ)
); defun
This program is total overkill for the job, but it illustrates some interesting loops, branches and tests. The job could be
done alternatively by shelling out of AutoCAD and entering the DOS copy command to change the filename, but you
would do more typing.

 [Load a lisp program]^C^C^P(defun lode ()+
 (setq fnam (getstring "Filename: "))+
 (load (setq fullname (strcat "/acad11/lisp/" fnam ".lsp"))))+
 (lode);^P
Finally, here is a program that is written into the menu macro to load any lisp program from the LISP directory. Note
the use of the ^P to toggle menu echoing on and off. It actually affects messages and prompts, and in this case, ^P
prevents the entire defined function 'lode' from being written at the command prompt.

Well, I hope this has been as much fun for you as it has been for me. All that remains is to give you the last homework
assignment of this introductory course, and to wish you good programming.

Home work assignment.

1. Write a program to draw graphs from y-ordinate data supplied by an external file, similar to the GRAPH2.LSP
program of this lesson. Start your graphs at a user supplied origin (you will then need to add the y-value of the start
point to each of the y-values in the external file before defining the points pp). Give your graphs axes and titles with
numbers on the axes as shown in figure 8-8. For axis numbering and length, you will need to find the maximum value
of the y-values, and this can be done with the following code:

 (setq index 0 ymax 0.0)

Page 52 of 64

An Introduction to AutoLISP
 (repeat numpoints
 (if (< ymax (cadr (nth index ptlst)))
 (setq ymax (cadr (nth index ptlst)))
)
 (setq index (1+ index))
)
Your program should be able to handle any positive numbers in the y-direction, plotted against equal increments in the
x-direction. The number of points along the x-axis will be the same as the number of values in the external file, which
will typically be in the range 5 to 25.

Page 53 of 64

	An Introduction to AutoLISP
	AutoLISP program evaluation and control
	Home work assignments
	AutoLISP Functions for Math and Geometry

	Logic and Branching out with AutoLISP
	Intelligent Programming with AutoLISP

